996 resultados para Light trap
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este trabalho foi realizado de fevereiro a dezembro de 1995, na Estação Científica Ferreira Penna, localizada no interior da Floresta Nacional de Caxiuanã, município de Melgaço, estado do Pará, com o objetivo de estudar as atividades sazonal e diária na floresta e no ambiente humano, e a estratificação arbórea das várias espécies de culicídeos. As coletas foram realizadas com a utilização de isca humana e armadilha luminosa do tipo CDC - isca ave, na floresta, no solo e copa das árvores e isca humana no peridomicílio. Um total de 1919 mosquitos foram coletados, distribuídos nos gêneros Aedes Meigen, 1818, Anopholes Meigen, 1818, Haemagogus Williston, 1896, Psorophora Robineau-Desvoidy, 1827, Culex Linnaeus, 1758, Coquillettidia Dyar, 1905, Mansonia Blanchard, 1904, uranotaenia Lynch-Arribalzaga, 1891, Limatus Theobald, 1901, Phoniomya Theobald, 1903, Ruchomya Theobald, 1903, Sabethes Robineau-Desvoidy, 1827, Trichoprosopon Theobald, 1901 e Wyeomyia Theobald, 1901. As espécies predominantes foram Culex (Melanoconion) portesi Senevet & Abonnec, 1941 (50,65%), Coquillettidia (Rhynchotaenia) venezuelensis (Theobald, 1912) (9,17%) e Haemagogus (Haemagogus) janthinomys dyar, 1921 (6,51%). As atividades horária e sazonal foram relacionadas com a temperatura, umidade e precipitação pluviométrica, e através do teste de correlação de Spearman, comprovou-se a interferência desses fatores sobre a atividade de algumas espécies. A hipótese de haver diferença significativa entre o número de espécies e exemplares, no solo e copa, foi verificada com utilização do teste do X² (qui-quadrado), que comprovou a diferença significativa somente entre o número de exemplares coletados no solo e copa, em isca humana na floresta.
Resumo:
Este estudo avaliou a fauna de Arctiinae em um fragmento de floresta primária em Altamira, Pará, na Amazônia Oriental brasileira. As mariposas foram amostradas durante dois anos (de agosto de 2007 a julho de 2009), com auxílio de armadilha luminosa. Foram medidos os seguintes parâmetros: riqueza, abundância, constância, índices de diversidade e uniformidade de Shannon (H' e E') e de Brillouin (H e E) e o índice de dominância de Berger-Parker (BP). As estimativas de riqueza, foram efetuadas através dos procedimentos não paramétricos, "Bootstrap", "Chao 1", "Chao 2", "Jackknife 1", "Jackknife2" e "Michaelis-Mentem". Foram capturados 466 exemplares pertencentes a 78 espécies de Arctiinae, das quais 12 são novos registros para o Estado. Os valores dos parâmetros analisados para todo o período foram: H'= 3,08, E'= 0,708, H= 2,86, E= 0,705 e BP= 0,294. As comunidades dos meses menos chuvosos foram mais diversas. Os estimadores previram o encontro de 17 a 253 espécies a mais.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Light pollution due to exterior lighting is a rising concern. While glare, light trespass and general light pollution have been well described, there are few reported studies on the impact of light pollution on insects. By studying insect behavior in relation to artificial lighting, we suggest that control of the UV component of artificial lighting can significantly reduce its attractiveness, offering a strong ability to control the impact on insects. Traditionally, the attractiveness of a lamp to insects is calculated using the luminous efficiency spectrum of insect rhodopsin. This has enabled the development of lamps that emit radiation with wavelengths that are less visible to insects (that is, yellow lamps). We tested the assumption that the degree of visibility of a lamp to insects can predict its attractiveness by means of experimental collections. We found that the expected lamp's visibility is indeed related to the extent to which it attracts insects. However, the number of insects attracted to a lamp is disproportionally affected by the emission of ultraviolet radiation. UV triggers the behavior of approaching lights more or less independently of the amount of UV radiation emitted. Thus, even small amounts of UV should be controlled in order to develop bug-free lamps.
Resumo:
We investigate multipartite entanglement in relation to the process of quantum state exchange. In particular, we consider such entanglement for a certain pure state involving two groups of N trapped atoms. The state, which can be produced via quantum state exchange, is analogous to the steady-state intracavity state of the subthreshold optical nondegenerate parametric amplifier. We show that, first, it possesses some 2N-way entanglement. Second, we place a lower bound on the amount of such entanglement in the state using a measure called the entanglement of minimum bipartite entropy.
Resumo:
Long-term forecasts of pest pressure are central to the effective management of many agricultural insect pests. In the eastern cropping regions of Australia, serious infestations of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner)(Lepidoptera: Noctuidae) are experienced annually. Regression analyses of a long series of light-trap catches of adult moths were used to describe the seasonal dynamics of both species. The size of the spring generation in eastern cropping zones could be related to rainfall in putative source areas in inland Australia. Subsequent generations could be related to the abundance of various crops in agricultural areas, rainfall and the magnitude of the spring population peak. As rainfall figured prominently as a predictor variable, and can itself be predicted using the Southern Oscillation Index (SOI), trap catches were also related to this variable. The geographic distribution of each species was modelled in relation to climate and CLIMEX was used to predict temporal variation in abundance at given putative source sites in inland Australia using historical meteorological data. These predictions were then correlated with subsequent pest abundance data in a major cropping region. The regression-based and bioclimatic-based approaches to predicting pest abundance are compared and their utility in predicting and interpreting pest dynamics are discussed.
Resumo:
Climate change is one of the biggest environmental problems of the 21st century. The most sensitive indicators of the effects of the climatic changes are phenological processes of the biota. The effects of climate change which were observed the earliest are the remarkable changes in the phenology (i.e. the timing of the phenophases) of the plants and animals, which have been systematically monitored later. In our research we searched for the answer: which meteorological factors show the strongest statistical relationships with phenological phenomena based on some chosen plant and insect species (in case of which large phenological databases are available). Our study was based on two large databases: one of them is the Lepidoptera database of the Hungarian Plant Protection and Forestry Light Trap Network, the other one is the Geophytes Phenology Database of the Botanical Garden of Eötvös Loránd University. In the case of butterflies, statistically defined phenological dates were determined based on the daily collection data, while in the case of plants, observation data on blooming were available. The same meteorological indicators were applied for both groups in our study. On the basis of the data series, analyses of correlation were carried out and a new indicator, the so-called G index was introduced, summing up the number of correlations which were found to be significant on the different levels of significance. In our present study we compare the significant meteorological factors and analyse the differences based on the correlation data on plants and butterflies. Data on butterflies are much more varied regarding the effectiveness of the meteorological factors.
Resumo:
Setting out from the database of Operophtera brumata, L. in between 1973 and 2000 due to the Light Trap Network in Hungary, we introduce a simple theta-logistic population dynamical model based on endogenous and exogenous factors, only. We create an indicator set from which we can choose some elements with which we can improve the fitting results the most effectively. Than we extend the basic simple model with additive climatic factors. The parameter optimization is based on the minimized root mean square error. The best model is chosen according to the Akaike Information Criterion. Finally we run the calibrated extended model with daily outputs of the regional climate model RegCM3.1, regarding 1961-1990 as reference period and 2021-2050 with 2071-2100 as future predictions. The results of the three time intervals are fitted with Beta distributions and compared statistically. The expected changes are discussed.
Resumo:
Among insects, which are the most diverse eukaryotic group on earth, Lepidoptera is one of four enormously diverse orders, with approximately 10,000 described species in North America. Within the order, Nearctic “microlepidoptera,” which represent an overwhelmingly large percentage of diversity within the order, remain poorly known despite their ecological importance in many plant communities. In this thesis, I undertook several studies of microlepidoptera diversity in a natural community type (hill prairie) and a managed community type (biofuel feedstock). In two Illinois hill prairies differing in size, latitude, and plant composition, alpha diversity of Pyraloidea and Tortricidae was similar, but the prairies were found to support different sets of species of these moth groups. It is concluded that the similarity in alpha diversity occurs because the larger prairie supports primarily a complement of moth species that feed as larvae on prairie plants (especially species of Asteraceae and Fabaceae), whereas the moths collected in the small prairie represent relatively few prairie-associated species, plus a large component of species that feed as larvae on deciduous trees that surround the prairie. This agrees with the finding of high beta diversity of moths between the sites, which reflects a high level of larval hostplant specificity in most species of Pyraloidea and Tortricidae. Based on published information plus observations made on microlepidoptera collected during the course of this study, 31 families of basal microlepidoptera were reviewed with an aim toward evaluating the likelihood of their including species that are dependent on tallgrass prairie. Of these families, 12 were evaluated as possible, and two as likely or certain, to include prairie-dependent species. In a comparison of moth diversity in light-trap samples from corn, miscanthus, switchgrass, and native prairie, alpha diversity was highest in prairie and was higher in switchgrass than in the other two biofuel crops. Moth species complements generally were similar among the biofuel crops, and prairie shared higher species complementarity with switchgrass than with corn or miscanthus. These findings suggest that large-scale conversion of land to biofuel crops may, to a substantial degree, detrimentally affect arthropod biodiversity, with a resulting loss of valuable arthropod-derived ecosystem services both within the cropping systems and in the surrounding landscape. During the course of this study, rearing efforts yielded two species of moths of the family Gelechiidae, both of which are monophagous leaf feeders on leadplant, Amorpha canescens (Fabaceae). Because these moths are restricted to tallgrass prairie, they are likely to be of interest to conservation biologists. In the interest of naming the moths to facilitate communication regarding them, and to augment our taxonomic knowledge of their respective genera, the moths are described, and diagnoses are provided to differentiate them from similar, related species.