921 resultados para Light Culture and Dark Culture
Resumo:
Recent experiments on various similar green fluorescent protein (GFP) mutants at the single-molecule level and in solution provide evidence of previously unknown short- and long-lived “dark” states and of related excited-state decay channels. Here, we present quantum chemical calculations on cis-trans photoisomerization paths of neutral, anionic, and zwitterionic GFP chromophores in their ground and first singlet excited states that explain the observed behaviors from a common perspective. The results suggest that favorable radiationless decay channels can exist for the different protonation states along these isomerizations, which apparently proceed via conical intersections. These channels are suggested to rationalize the observed dramatic reduction of fluorescence in solution. The observed single-molecule fast blinking is attributed to conversions between the fluorescent anionic and the dark zwitterionic forms whereas slow switching is attributed to conversions between the anionic and the neutral forms. The predicted nonadiabatic crossings are seen to rationalize the origins of a variety of experimental observations on a common basis and may have broad implications for photobiophysical mechanisms in GFP.
Resumo:
This introduction essay proposes a challenging program for researchers eager to explore factors and process mechanisms contributing to the benefits and costs individuals and groups incur from pursuing innovative approaches. With respect to individual innovation, such moderating factors might be found in the characteristics of the innovative idea, the innovator, co-workers, supervisors, the broader organizational context, and in national culture. Examples of factors that are likely to shape the beneficial and detrimental outcomes of group innovation include knowledge, skills and ability of group members, group tenure, diversity among group members, group processes (clarifying group objectives, participation, constructive management of competing perspectives), and external demands on groups. This Special Issue contains a state-of-the-science paper, three articles dealing with the benefits and costs of individual innovation, and three articles addressing the bright and dark sides of group innovation. Copyright © 2004 John Wiley & Sons, Ltd.
Resumo:
Clay mineral relative abundances in approximately 450 samples from cores recovered during ODP Leg 117 in the Arabian Sea have been used to examine the paleoclimatic, paleoenvironmental, and tectonic histories of the Indus Fan, Owen Ridge, Oman margin, and adjacent continental source regions. Geographic variations in the relative abundances of minerals and correlations with depositional processes support previous interpretations that smectite has been supplied from weathering of the Deccan Traps; illite and chlorite have been supplied either from the Himalayas via marine transport or from the Iran-Makran region by winds; and palygorskite has been supplied from the Arabian peninsula and Somalia by winds. Pleistocene sediments of the Indus Fan record two modes of deposition: turbidites supplied from the Indus drainage and dominated by illite and chlorite, and pelagic carbonates containing smectites and wind-transported palygorskite. Local and regional causes for shifts between these depositional processes cannot be demonstrated conclusively with the data available, but sea-level fluctuations probably exerted a significant control on the rate of turbidite influx. Lower Miocene sediments on the Owen Ridge are also turbidites supplied by the Indus drainage; in the middle Miocene, a shift to pelagic carbonates records the uplift of the Owen Ridge, and is accompanied by the increased relative importance of wind-transported palygorskite. Associations of palygorskite and biosiliceous components in middle to upper Miocene sediments are interpreted to record vigorous monsoonal circulation and accompanying upwelling-produced biological productivity. Mineralogic and geochemical data indicate that light/dark color alternations in upper Miocene sediments on the Owen Ridge record climatic fluctuations, but the climatic significance of similar alternations in Pliocene-Pleistocene sediments is unclear. Palygorskite is the dominant clay on the Oman margin, reflecting proximity to its source areas. On the Oman margin, clay mineral relative abundances are most variable at structurally complex sites, indicating that local depositional settings have been influenced by their tectonic histories since the Miocene.
Resumo:
The marine dinoflagellate genus Dinophysis includes species that are the causative agents of diarrhetic shellfish poisoning (DSP). Recent findings indicate that some Dinophysis species are mixotrophic, i.e. capable of both autotrophic and heterotrophic nutrition. We investigated inorganic (and organic) carbon uptake by several species of Dinophysis in the Light and dark using the 'single-cell C-14 method', and compared uptake rates with those of photosynthetic Ceratium species and heterotrophic dinoflagellates in the genus Protoperidinium. Experiments were conducted with water from the Gullmar Fjord and from the Koster Strait (Swedish west coast). Nutrient-enriched phytoplankton from surface water samples were concentrated (20 to 70 mu m) and incubated at in situ temperature under artificial light conditions with high concentrations of inorganic C-14 (1 mu Ci ml(-1)). Individual cells of each desired species were manually isolated under a microscope and transferred to scintillation vials. C. tripes showed net C-14 uptake only during light periods, whereas both C. lineatum and C. furca showed C-14 uptake in the Light as well as uptake (and sometimes losses) in the dark. Dinophysis species had similar carbon fixation rates in Light compared to Ceratium species. For D. acuminata and D. norvegica, net carbon uptake occurred in both Light and dark periods. D. acuta showed a loss of carbon in the dark in one experiment, but in another, dark C uptake was significantly higher than uptake in Light. When exposed to Light, C. furca, D. norvegica and D. acuta had high specific carbon uptake rates. Growth rates for the different species were calculated from C-14 uptake by the cells during the first hours of incubation in light. D. acuminata and D. norvegica had similar maximum growth rates, 0.59 and 0.63 d(-1) (mu); the maximum growth rate of D. acuta was lower (0.41 d(-1)). The positive dark carbon uptake by Dinophysis may suggest a mixotrophic mode of nutrition. In one experiment, both D. norvegica and D. acuta showed a significantly higher carbon uptake in a dark bottle than in a Light bottle, which would be consistent with uptake of C-14-labeled organic matter by D. norvegica and D. acuta. Demonstration of direct uptake of dissolved and particulate organic matter would provide conclusive evidence of mixotrophy and this will require the development of new protocols for measuring organic matter uptake applicable to Dinophysis in the natural assemblages.
Resumo:
A laboratory experiment compared germination of the invasive exotic grass Hymenachne amplexicaulis (Rudge) Nees and the native H. acutigluma (Steud.) Gilliland. Seeds of both species were exposed to combinations of light (constant dark, alternating dark/light or constant light), temperature (constant or alternating) and nitrate regimes (with or without the addition of KNO3). Three seed lots of H. amplexicaulis (fresh, two adn four months old) and one of H. acutigluma (fresh seed) were tested. A significant temperature x light x nitrate x seed lot interaction occured. At a constant temperature very few seeds of either H. amplexicaulis or H. acutigluma germinated, regardless of the light regime or addition of KNO3. Generally, maximum germination occurred under a combination of alternating temperature, the presence of light (either constant or alternating) and the addition of KNO3. The exception was four month stored H. amplexicaulis seed, which reached maximum germinaction without the need for KNO3. Fresh seed of both H. amplexicaulis and H. acutigluma exhibited similar germination requirements. These findings suggest that conditions that buffer seeds from light and/or temperature fluctuations could reduce germination and possibly extend the life of seed banks of both H. amplexicaulis and H. acutigluma. Conversely, for land managers trying to control the exotic H. amplexicaulis, activities that create more favourable conditions for germination may help deplete seed banks faster.
Resumo:
Ferrocenyl platinum(II) complexes (1-3), viz. Pt(Fc-tpy)Cl]Cl (1), Pt(Fc-tpy)(NPC)]Cl (2, HNPC = N-propargyl carbazole) and Pt(Fc-bpa)Cl]Cl (3), were prepared, characterized and their anti-proliferative properties in visible light in human keratinocyte (HaCaT) cell lines have been studied. Pt(Ph-tpy)Cl]Cl (4) was prepared and used as a control. Complexes 1 and 3, structurally characterized by X-ray crystallography, show distorted square-planar geometry for the platinum(II) centre. Complexes 1 and 2 having the Fc-tpy ligand showed an intense absorption band at similar to 590 nm. The ferrocenyl complexes are redox active showing the Fc(+)-Fc couple near 0.6 V vs. SCE in DMF-0.1 M tetrabutylammonium perchlorate (TBAP). Complexes 1-3 showed external binding to calf thymus DNA. Both 1 and 2 showed remarkable photocytotoxicity in HaCaT cell lines giving respective IC50 values of 9.8 and 12.0 mu M in visible light of 400-700 nm with low dark toxicity (IC50 > 60 mu M). Fluorescent imaging studies showed the spread of the complexes throughout the cell localising both in cytoplasm and the nucleus. The ferrocenyl complexes triggered apoptosis on light exposure as evidenced from the Annexin V-FITC/PI and DNA ladder formation assays. Spectral studies revealed the formation of ferrocenium ions upon photo-irradiation generating cytotoxic hydroxyl radicals via a Fenton type mechanism. The results are rationalized from a TDDFT study that shows involvement of ferrocene and the platinum coordinated terpyridine moiety as respective HOMO and LUMO.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Ocean acidification is expected to lower the net accretion of coral reefs yet little is known about its effect on coral photophysiology. This study investigated the effect of increasing CO2 on photosynthetic capacity and photoprotection in Acropora formosa. The photoprotective role of photorespiration within dinoflagellates (genus Symbiodinium) has largely been overlooked due to focus on the presence of a carbon-concentrating mechanism despite the evolutionary persistence of a Form II Rubisco. The photorespiratory fixation of oxygen produces phosphoglycolate that would otherwise inhibit carbon fixation though the Calvin cycle if it were not converted to glycolate by phosphoglycolate phosphatase (PGPase). Glycolate is then either excreted or dealt with by enzymes in the photorespiratory glycolate and/or glycerate pathways adding to the pool of carbon fixed in photosynthesis. We found that CO2 enrichment led to enhanced photoacclimation (increased chlorophyll a per cell) to the subsaturating light levels. Light-enhanced dark respiration per cell and xanthophyll de-epoxidation increased, with resultant decreases in photosynthetic capacity (Pnmax) per chlorophyll. The conservative CO2 emission scenario (A1B; 600-790 ppm) led to a 38% increase in the Pnmax per cell whereas the 'business-as-usual' scenario (A1F1; 1160-1500 ppm) led to a 45% reduction in PGPase expression and no change in Pnmax per cell. These findings support an important functional role for PGPase in dinoflagellates that is potentially compromised under CO2 enrichment.
Resumo:
Isotretinoin (13-cis retinoic acid) is frequently prescribed for severe acne [Peck, G. L., Olsen, T. G., Yoder, F. W., Strauss, J. S., Downing, D. T., Pandya, M., Butkus, D. & Arnaud-Battandier, J. (1979) N. Engl. J. Med. 300, 329–333] but can impair night vision [Fraunfelder, F. T., LaBraico, J. M. & Meyer, S. M. (1985) Am. J. Ophthalmol. 100, 534–537] shortly after the beginning of therapy [Shulman, S. R. (1989) Am. J. Public Health 79, 1565–1568]. As rod photoreceptors are responsible for night vision, we administered isotretinoin to rats to learn whether night blindness resulted from rod cell death or from rod functional impairment. High-dose isotretinoin was given daily for 2 months and produced systemic toxicity, but this caused no histological loss of rod photoreceptors, and rod-driven electroretinogram amplitudes were normal after prolonged dark adaptation. Additional studies showed, however, that even a single dose of isotretinoin slowed the recovery of rod signaling after exposure to an intense bleaching light, and that rhodopsin regeneration was markedly slowed. When only a single dose was given, rod function recovered to normal within several days. Rods and cones both showed slow recovery from bleach after isotretinoin in rats and in mice. HPLC analysis of ocular retinoids after isotretinoin and an intense bleach showed decreased levels of rhodopsin chromophore, 11-cis retinal, and the accumulation of the biosynthetic intermediates, 11-cis and all-trans retinyl esters. Isotretinoin was also found to protect rat photoreceptors from light-induced damage, suggesting that strategies of altering retinoid cycling may have therapeutic implications for some forms of retinal and macular degeneration.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08