907 resultados para Life stages
Resumo:
Dry mass (DM) and total ammonia-N (TAN) excretion were determined in embryos, larvae (ZI-ZIX, Z = zoea ), and postlarvae (PL) at 1, 7, and 14 d after metamorphosis (PL1, PL7, and PL14) of Macrobrachium amazonicum. Animals in postmolt-intermolt (A-C) stages were sorted according to their developmental stages, and placed into incubation chambers (similar to 30 mL) for 2 h to quantify TAN excretion. After this period, analyses were carried out using Koroleff`s method for TAN determination. Individual TAN excretion generally increased throughout ontogenetic development and varied from 0.0090 +/- 0.0039 mu g TAN/individual/h in embryo to 1.041 +/- 0.249 mu g TAN/individual/h in PL14. There was no significant difference between embryo-ZIV and ZV-ZIX (P > 0.05), whereas PL1, PL7, and PL14 differed (P < 0.05) from each other. Higher increments in individual ammonia-N excretion were observed between ZIV-ZV, PL1-PL7, and PL7-PL14. Mass-specific excretion rates presented two groups, embryo-ZII (P > 0.05) and ZIII-PL14 (P > 0.05). The lowest value was found in embryo (0.17 +/- 0.07 mu g TAN/mg DM/h) and the maximum values in ZV and PL1 (0.65 +/- 0.25 and 0.64 +/- 0.27 mu g TAN/mg DM/h, respectively). Results indicate that metabolic rate is proportional to the body mass in M. amazonicum, during early life stages. Variations in ammonia excretion during this phase may be associated mainly with body size. Data obtained in the present study may be useful in developing and optimizing rearing techniques of M. amazonicum, such as the proportions between biofilter and rearing tank size, and stocking density in culture tanks or in transport bags.
Resumo:
In many plant species, the genetic template of early life-stages is formed by animal-mediated pollination and seed dispersal and has profound impact on further recruitment and population dynamics. Understanding the impact of pollination and seed dispersal on genetic patterns is a central issue in plant population biology. In my thesis, I investigated (i) contemporary dispersal and gene flow distances as well as (ii) genetic diversity and spatial genetic structure (SGS) across subsequent recruitment stages in a population of the animal-pollinated and dispersed tree Prunus africana in Kakamega Forest, West Kenya. Using microsatellite markers and parentage analyses, I inferred distances of pollen dispersal (father-to-mother), seed dispersal/maternal gene flow (mother-to-offspring) as well as paternal gene flow (father-to-offspring) for four early life stages of the species (seeds and fruits, current year seedlings, seedlings ≤ 3yr, seedlings > 3yr). Distances of pollen and seed dispersal as well as paternal gene flow were significantly shorter than expected from the spatial arrangement of trees and sampling plots. They were not affected by the density of conspecific trees in the surrounding. At the propagule stage, mean pollen dispersal distances were considerably (23-fold) longer than seed dispersal distances, and paternal gene flow distances exceeded maternal gene flow by a factor of 25. Seed dispersal distances were remarkably restricted, potentially leading to a strong initial SGS. The initial genetic template created by pollination and seed dispersal was extensively altered during later recruitment stages. Potential Janzen-Connell effects led to markedly increasing distances between offspring and both parental trees in older life stages. This showed that distance and density-dependent mortality factors are not exclusively related to the mother tree, but also to the father. Across subsequent recruitment stages, the pollen to seed dispersal ratio and the paternal to maternal gene flow ratio dropped to 2.1 and 3.4, respectively, in seedlings > 3yr. The relative changes in effective pollen dispersal, seed dispersal, and paternal gene flow distances across recruitment stages elucidate the mechanisms affecting the contribution of the two processes pollen and seed dispersal to overall gene flow. Using the same six microsatellite loci, I analyzed genetic diversity and SGS across five life stages, from seed rain to adults. Levels of genetic diversity within the studied P. africana population were comparable to other Prunus species and did not vary across life stages. In congruence with the short seed dispersal distances, I found significant SGS in all life stages. SGS decreased from seed and early seedling stages to older juvenile stages, and it was higher in adults than in late juveniles of the next generation. A comparison of the data with direct assessments of contemporary gene flow patterns indicate that distance- or density-dependent mortality, potentially due to Janzen-Connell effects, led to the initial decrease in SGS. Intergeneration variation in SGS could have been driven by variation in demographic processes, the effect of overlapping generations, and local selection processes. Overall, my study showed that complex sequential processes during recruitment contribute to the spatial genetic structure of tree populations. It highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal-mediated pollen and seed dispersal on spatial population dynamics and genetic patterns of trees.
Resumo:
As an initial step in establishing mechanistic relationships between environmental variability and recruitment in Atlantic cod Gadhus morhua along the coast of the western Gulf of Maine, we assessed transport success of larvae from major spawning grounds to nursery areas with particle tracking using the unstructured grid model FVCOM (finite volume coastal ocean model). In coastal areas, dispersal of early planktonic life stages of fish and invertebrate species is highly dependent on the regional dynamics and its variability, which has to be captured by our models. With state-of-the-art forcing for the year 1995, we evaluate the sensitivity of particle dispersal to the timing and location of spawning, the spatial and temporal resolution of the model, and the vertical mixing scheme. A 3 d frequency for the release of particles is necessary to capture the effect of the circulation variability into an averaged dispersal pattern of the spawning season. The analysis of sensitivity to model setup showed that a higher resolution mesh, tidal forcing, and current variability do not change the general pattern of connectivity, but do tend to increase within-site retention. Our results indicate strong downstream connectivity among spawning grounds and higher chances for successful transport from spawning areas closer to the coast. The model run for January egg release indicates 1 to 19 % within-spawning ground retention of initial particles, which may be sufficient to sustain local populations. A systematic sensitivity analysis still needs to be conducted to determine the minimum mesh and forcing resolution that adequately resolves the complex dynamics of the western Gulf of Maine. Other sources of variability, i.e. large-scale upstream forcing and the biological environment, also need to be considered in future studies of the interannual variability in transport and survival of the early life stages of cod.
Effects of CO2-driven ocean acidification on early life stages of marine medaka (Oryzias melastigma)
Resumo:
The potential effects of elevated CO2 level and reduced carbonate saturation state in marine environment on fishes and other non-calcified organisms are still poorly known. In present study, we investigated the effects of ocean acidification on embryogenesis and organogenesis of newly hatched larvae of marine medaka (Oryzias melastigma) after 21 d exposure of eggs to different artificially acidified seawater (pH 7.6 and 7.2, respectively), and compared with those in control group (pH 8.2). Results showed that CO2-driven seawater acidification (pH 7.6 and 7.2) had no detectable effect on hatching time, hatching rate, and heart rate of embryos. However, the deformity rate of larvae in pH 7.2 treatment was significantly higher than that in control treatment. The left and right sagitta areas did not differ significantly from each other in each treatment. However, the mean sagitta area of larvae in pH 7.6 treatment was significantly smaller than that in the control (p = 0.024). These results suggest that although marine medaka might be more tolerant of elevated CO2 than some other fishes, the effect of elevated CO2 level on the calcification of otolith is likely to be the most susceptibly physiological process of pH regulation in early life stage of marine medaka.
Resumo:
The response of Emiliania huxleyi (Lohmann), Calcidiscus leptoporus (Murray and Blackman), and Syracosphaera pulchra (Lohmann) to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. For the first time, we reported on the response of the non-calcifying (haploid) life stage of these three species. Growth rate, cell size, particulate inorganic (PIC) and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 ppm) and their organic and inorganic carbon production calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2 but the response of other processes varied among species. Calcification rate of C. leptoporus and of S. pulchra did not change at elevated pCO2 while it increased in E. huxleyi. Particulate organic carbon production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophores species, the haploid stage being more sensitive. This must be taken into account when predicting the fate of coccolithophores in the future ocean.
Resumo:
As the world's oceans continue to absorb anthropogenic CO2 from the atmosphere, the carbonate chemistry of seawater will change. This process, termed ocean acidification, may affect the physiology of marine organisms. Arctic seas are expected to experience the greatest decreases in pH in the future, as changing sea ice dynamics and naturally cold, brackish water, will accelerate ocean acidification. In this study, we investigated the effect of increased pCO2 on the early developmental stages of the key Arctic copepod Calanus glacialis. Eggs from wild-caught C. glacialis females from Svalbard, Norway (80°N), were cultured for 2 months to copepodite stage C1 in 2°C seawater under four pCO2 treatments (320, 530, 800, and 1700 ?atm). Developmental rate, dry weight, and carbon and nitrogen mass were measured every other day throughout the experiment, and oxygen consumption rate was measured at stages N3, N6, and C1. All endpoints were unaffected by pCO2 levels projected for the year 2300. These results indicate that naupliar development in wild populations of C. glacialis is unlikely to be detrimentally affected in a future high CO2 ocean.
Resumo:
Larval stages are among those most vulnerable to ocean acidification (OA). Projected atmospheric CO2 levels for the end of this century may lead to negative impacts on communities dominated by calcifying taxa with planktonic life stages. We exposed Mediterranean mussel (Mytilus galloprovincialis) sperm and early life stages to pHT levels of 8.0 (current pH) and 7.6 (2100 level) by manipulating pCO2 level (380 and 1000 ppm). Sperm activity was examined at ambient temperatures (16-17 °C) using individual males as replicates. We also assessed the effects of temperature (ambient and = 20 °C) and pH on larval size, survival, respiration and calcification of late trochophore/early D-veliger stages using a cross-factorial design. Increased pCO2 had a negative effect on the percentage of motile sperm (mean response ratio R= 71%) and sperm swimming speed (R= 74%), possibly indicating reduced fertilization capacity of sperm in low concentrations. Increased temperature had a more prominent effect on larval stages than pCO2, reducing performance (RSize = 90% and RSurvival = 70%) and increasing energy demand (RRespiration = 429%). We observed no significant interactions between pCO2 and temperature. Our results suggest that increasing temperature might have a larger impact on very early larval stages of M. galloprovincialis than OA at levels predicted for the end of the century.
Resumo:
Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.
Resumo:
Ocean acidification (OA) is anticipated to interact with the more frequently occurring hypoxic conditions in shallow coastal environments. These could exert extreme stress on the barnacle-dominated fouling communities. However, the interactive effect of these two emerging stressors on early-life stages of fouling organisms remains poorly studied. We investigated both the independent and interactive effect of low pH (7.6 vs. ambient 8.2) and low oxygen (LO; 3 mg/l vs. ambient 5 mg/l) from larval development through settlement (attachment and metamorphosis) and juvenile growth of the widespread fouling barnacle, Balanus amphitrite. In particular, we focused on the critical transition between planktonic and benthic phases to examine potential limiting factors (i.e. larval energy storage and the ability to perceive cues) that may restrain barnacle recruitment under the interactive stressors. LO significantly slowed naupliar development, while the interaction with low pH (LO-LP) seemed to alleviate the negative effect. However, 20-50% of the larvae became cyprid within 4 d post-hatching, regardless of treatment. Under the two stressors interaction (LO-LP), the barnacle larvae increased their feeding rate, which may explain why their energy reserves at competency were not different from any other treatment. In the absence of a settlement-inducing cue, a significantly lower percentage of cyprids (15% lower) settled in LO and LO-LP. The presence of an inducing cue, however, elevated attachment up to 50-70% equally across all treatments. Post-metamorphic growth was not altered, although the condition index was different between LO and LO-LP treatments, potentially indicating that less and/or weaker calcified structures were developed when the two stressors were experienced simultaneously. LO was the major driver for the responses observed and its interaction with low pH should be considered in future studies to avoid underestimating the sensitivity of biofouling species to OA and associated climate change stressors.
Resumo:
Several experiments have shown a decrease of growth and calcification of organisms at decreased pH levels. There is a growing interest to focus on early life stages that are believed to be more sensitive to environmental disturbances such as hypercapnia. Here, we present experimental data, acquired in a commercial hatchery, demonstrating that the growth of planktonic mussel (Mytilus edulis) larvae is significantly affected by a decrease of pH to a level expected for the end of the century. Even though there was no significant effect of a 0.25-0.34 pH unit decrease on hatching and mortality rates during the first 2 days of development nor during the following 13-day period prior to settlement, final shells were respectively 4.5±1.3 and 6.0±2.3% smaller at pHNBS~7.8 (pCO2~1100-1200 µatm) than at a control pHNBS of ~8.1 (pCO2~460-640 µatm). Moreover, a decrease of 12.0±5.4% of shell thickness was observed after 15d of development. More severe impacts were found with a decrease of ~0.5 pHNBS unit during the first 2 days of development which could be attributed to a decrease of calcification due to a slight undersaturation of seawater with respect to aragonite. Indeed, important effects on both hatching and D-veliger shell growth were found. Hatching rates were 24±4% lower while D-veliger shells were 12.7±0.9% smaller at pHNBS~7.6 (pCO2~1900 µatm) than at a control pHNBS of ~8.1 (pCO2~540 µatm). Although these results show that blue mussel larvae are still able to develop a shell in seawater undersaturated with respect to aragonite, the observed decreases of hatching rates and shell growth could lead to a significant decrease of the settlement success. As the environmental conditions considered in this study do not necessarily reflect the natural conditions experienced by this species at the time of spawning, future studies will need to consider the whole larval cycle (from fertilization to settlement) under environmentally relevant conditions in order to investigate the potential ecological and economical losses of a decrease of this species fitness in the field.
Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera
Resumo:
This study investigated the impacts of acidified seawater (pCO2 900 µatm) and elevated water temperature (+3 °C) on the early life history stages of Acropora spicifera from the subtropical Houtman Abrolhos Islands (28°S) in Western Australia. Settlement rates were unaffected by high temperature (27 °C, 250 µatm), high pCO2 (24 °C, 900 µatm), or a combination of both high temperature and high pCO2 treatments (27 °C, 900 µatm). There were also no significant differences in rates of post-settlement survival after 4 weeks of exposure between any of the treatments, with survival ranging from 60 to 70 % regardless of treatment. Similarly, calcification, as determined by the skeletal weight of recruits, was unaffected by an increase in water temperature under both ambient and high pCO2 conditions. In contrast, high pCO2 significantly reduced early skeletal development, with mean skeletal weight in the high pCO2 and combined treatments reduced by 60 and 48 %, respectively, compared to control weights. Elevated temperature appeared to have a partially mitigative effect on calcification under high pCO2; however, this effect was not significant. Our results show that rates of settlement, post-settlement survival, and calcification in subtropical corals are relatively resilient to increases in temperature. This is in marked contrast to the sensitivity to temperature reported for the majority of tropical larvae and recruits in the literature. The subtropical corals in this study appear able to withstand an increase in temperature of 3 °C above ambient, indicating that they may have a wider thermal tolerance range and may not be adversely affected by initial increases in water temperature from subtropical 24 to 27 °C. However, the reduction in skeletal weight with high pCO2 indicates that early skeletal formation will be highly vulnerable to the changes in ocean pCO2 expected to occur over the twenty-first century, with implications for their longer-term growth and resilience.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Personality traits have been studied for some decades in fish species. Yet, most often, studies focused on juveniles or adults. Thus, very few studies tried to demonstrate that traits could also be found in fish larvae. In this study, we aimed at identifying personality traits in Northern pike (Exos lucius) larvae. Twenty first-feeding larvae aged 21 days post hatch (16.1 +/− 0.4 mm in total length, mean +/− SD) were used to establish personality traits with two tests: a maze and a novel object. These tests are generally used for evaluating the activity and exploration of specimens as well as their activity and boldness, respectively. The same Northern pike twenty larvae were challenged in the two tests. Their performances were measured by their activity, their exploratory behaviour and the time spent in the different arms of the maze or near the novel object. Then, we used principal component analysis (PCA) and a hierarchical ascendant classification (HAC) for analysis of each data set separately. Finally, we used PCA reduction for the maze test data to analyse the relationship between a synthetic behavioural index (PCA1) and morphometric variables. Within each test, larvae could be divided in two sub groups, which exhibited different behavioural traits, qualified as bold (n = 7 for the maze test and n = 13 for the novel object test) or shy (n = 9 for the maze test and n = 11 for the novel object test). Nevertheless, in both tests, there was a continuum of boldness/shyness. Besides, some larvae were classified differently between the two tests but 40 % of the larvae showed cross context consistency and could be qualified as bold and/or proactive individuals. This study showed that it is possible to identify personality traits of very young fish larvae of a freshwater fish species.
Resumo:
Tese dout., Ecologia, Universidade do Algarve, 2006