964 resultados para Life history traits


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two clones of Daphnia magna (Standard and Ruth) were exposed for 7 days to sub-lethal concentrations of acephate (5.0 and 10.0 mg/L). Survivorship, individual growth, reproduction and the population growth rate (lambda) were evaluated over three weeks. Acetylcholinesterase (AChE) activity was measured on days 2, 7 and 21. Acephate exposure inhibited AChE activity but had no direct effect on life history (LH) traits. There was also no effect of clone on AChE activity, LH and lambda. However, a significant interaction between clone and acephate concentration was found on both fecundity and AChE inhibition at 48 h was associated with a decrease in lambda the Standard clone and an increase in lambda in clone Ruth. Therefore, our findings show that genotypic variation will influence the link between AChE activity and toxic effects at higher levels of biological organisation in D. magna. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-steroidal anti-inflammatory drug (NSAID) ibuprofen (IB) is a widely used pharmaceutical that can be found in several freshwater ecosystems. Acute toxicity studies with Daphnia magna suggest that the 48 h EC50 (immobilisation) is 10-100 mg IB l(-1). However, there are currently no chronic IB toxicity dataon arthropod populations, and the aquatic life impacts of such analgesic drugs are still undefined. We performed a 14-day exposure of D. magna to IB as a model compound (concentration range: 0, 20, 40 and 80 mg IB l(-1)) measuring chronic effects on life history traits and population performance. Population growth rate was significantly reduced at all IB concentrations, although survival was only affected at 80 mg IB l(-1). Reproduction, however, was affected at lower concentrations of IB (14-day EC50 of 13.4 mg IB l(-1)), and was completely inhibited at the highest test concentration. The results from this study indicate that the long-term crustacean population consequences of a chronic IB exposure at environmentally realistic concentrations (ng l(-1) to mu g l(-1)) would most likely be of minor importance. We discuss our results in relation to recent genomic studies, which suggest that the potential mechanism of toxicity in Daphnia is similar to the mode of action in mammals, where IB inhibits eicosanoid biosynthesis. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competition is one of the most important biotic factors determining the structure of ecological communities. In this study, we show that there is variation in competitive ability between two clones of the pea aphid, Acyrthosiphon pisum, both of which out-compete a clone of the vetch aphid, Megoura viciae, in the laboratory. We tested whether this variation in competitive ability would alter the outcome of interspecific competition in the field. White one pea aphid clone followed the pattern set in the laboratory, out-competing the Megoura viciae clone, another showed the reverse effect with Megoura viciae dominating. These differences appear to be the result of variation in early population growth rate between the pea aphid clones, rather than predation, although predation did lead to the eventual extinction of colonies. We also questioned whether intra- and interspecific differences in predator escape behaviour could affect the outcome of competition in the field. All three clones responded similarly to the presence of foraging hoverfly larvae (Episyrphus balteatus), but the Megoura viciae clone dropped from the plant significantly less often in response to the presence of a foraging two-spot ladybird (Adalia bipunctata). This work provides evidence that intraspecific variation in competitive ability can alter the outcome of interspecific competitive interactions in nature and suggests that species-specific behavioural. traits may have the potential to modify the outcome of these interactions. (c) 2005 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life-history traits vary substantially across species, and have been demonstrated to affect substitution rates. We compute genomewide, branch-specific estimates of male mutation bias (the ratio of male-to-female mutation rates) across 32 mammalian genomes and study how these vary with life-history traits (generation time, metabolic rate, and sperm competition). We also investigate the influence of life-history traits on substitution rates at unconstrained sites across a wide phylogenetic range. We observe that increased generation time is the strongest predictor of variation in both substitution rates (for which it is a negative predictor) and male mutation bias (for which it is a positive predictor). Although less significant, we also observe that estimates of metabolic rate, reflecting replication-independent DNA damage and repair mechanisms, correlate negatively with autosomal substitution rates, and positively with male mutation bias. Finally, in contrast to expectations, we find no significant correlation between sperm competition and either autosomal substitution rates or male mutation bias. Our results support the important but frequently opposite effects of some, but not all, life history traits on substitution rates. KEY WORDS: Generation time, genome evolution, metabolic rate, sperm competition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Why some organisms become invasive when introduced into novel regions while others fail to even establish is a fundamental question in ecology. Barriers to success are expected to filter species at each stage along the invasion pathway. No study to date, however, has investigated how species traits associate with success from introduction to spread at a large spatial scale in any group. Using the largest data set of mammalian introductions at the global scale and recently developed phylogenetic comparative methods, we show that human-mediated introductions considerably bias which species have the opportunity to become invasive, as highly productive mammals with longer reproductive lifespans are far more likely to be introduced. Subsequently, greater reproductive output and higher introduction effort are associated with success at both the establishment and spread stages. High productivity thus supports population growth and invasion success, with barriers at each invasion stage filtering species with progressively greater fecundity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertebrates respond to environmental stressors through the neuro-endocrine stress response, which involves the production of glucocorticoids. We have selected independent, duplicate divergent lines of zebra finches for high, low and control corticosterone responses to a mild stressor. This experiment has shown that over the first four generations, the high lines have demonstrated a significant realized heritability of about 20%. However, the low lines have apparently not changed significantly from controls. This asymmetry in response is potentially because of the fact that all birds appear to be showing increased adaptation to the environment in which they are housed, with significant declines in corticosterone response in control lines as well as low lines. Despite the existence of two- to threefold difference in mean corticosterone titre between high and low lines, there were no observed differences in testosterone titre in adult male birds from the different groups. In addition, there were no consistent, significant differences between the lines in any of the life history variables measured – number of eggs laid per clutch, number of clutches or broods produced per pair, number of fledglings produced per breeding attempt, nor in any of egg, nestling and fledgling mortality. These results highlight the fact that the mechanisms that underlie variation in the avian physiological system can be modified to respond to differences between environments through selection. This adds an additional level of flexibility to the avian physiological system, which will allow it to respond to environmental circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative contribution of genetic and environmental factors in determining variation in life-history traits is of central interest to evolutionary biologists, but the physiological mechanisms underlying these traits are still poorly understood. Here we experimentally demonstrate opposing effects of nutritional stress on immune function, endocrine physiology, parental care, and reproduction between red and black head-color morphs of the Gouldian finch (Erythrura gouldiae). Although the body condition of black morphs was largely unaffected by diet manipulation, red birds were highly sensitive to dietary changes, exhibiting considerable within-individual changes in condition and immune function. Consequently, nutritionally stressed red birds delayed breeding, produced smaller broods, and reared fewer and lower-quality foster offspring than black morphs. Differences in offspring quality were largely due to morph-specific differences in parental effort: red morphs reduced parental provisioning, whereas black morphs adaptively elevated their provisioning effort to meet the increased nutritional demands of their foster brood. Nutritionally stressed genetic morphs also exhibited divergent glucocorticoid responses. Black morphs showed reduced corticosterone-binding globulin (CBG) concentrations and increased levels of free corticosterone, whereas red morphs exhibited reduced free corticosterone levels and elevated CBG concentrations. These opposing glucocorticoid responses highlight intrinsic differences in endocrine sensitivities and plasticity between genetic morphs, which may underlie the morph-specific differences in condition, behavior, and reproduction and thus ultimately contribute to the evolution and maintenance of color polymorphism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change modelers predict increasingly frequent “extreme events,” so it is critical to quantify whether organismal responses (such as reproductive output) measured over the range of usual climatic conditions can predict responses under more extreme conditions. In a 20-year field study on water pythons (Liasis fuscus), we quantified the effects of climatically driven annual variation in food supply on demographic traits of female pythons (feeding rate, body size, body mass, and reproductive output). Reaction norms linking food supply to feeding rates and residual body mass were broadly linear, whereas norms linking food supply to female body size became curvilinear when a dramatic (flooding-induced) famine reduced the mean body size at sexual maturity. Thus, the reaction norms recorded over 16 years of “normal” (albeit highly variable) climatic conditions gave little insight into the population's response to a more extreme nutritional crisis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations. © 2013 Fonseca et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)