909 resultados para Library for Visual Image Analysis
Resumo:
The aim of this project was to carry out a fundamental study to assess the potential of colour image analysis for use in investigations of fire damaged concrete. This involved:(a) Quantification (rather than purely visual assessment) of colour change as an indicator of the thermal history of concrete.(b) Quantification of the nature and intensity of crack development as an indication of the thermal history of concrete, supporting and in addition to, colour change observations.(c) Further understanding of changes in the physical and chemical properties of aggregate and mortar matrix after heating.(d) An indication of the relationship between cracking and non-destructive methods of testing e.g. UPV or Schmidt hammer. Results showed that colour image analysis could be used to quantify the colour changes found when concrete is heated. Development of red colour coincided with significant reduction in compressive strength. Such measurements may be used to determine the thermal history of concrete by providing information regarding the temperature distribution that existed at the height of a fire. The actual colours observed depended on the types of cement and aggregate that were used to make the concrete. With some aggregates it may be more appropriate to only analyse the mortar matrix. Petrographic techniques may also be used to determine the nature and density of cracks developing at elevated temperatures and values of crack density correlate well with measurements of residual compressive strength. Small differences in crack density were observed with different cements and aggregates, although good correlations were always found with the residual compressive strength. Taken together these two techniques can provide further useful information for the evaluation of fire damaged concrete. This is especially so since petrographic analysis can also provide information on the quality of the original concrete such as cement content and water / cement ratio. Concretes made with blended cements tended to produce small differences in physical and chemical properties compared to those made with unblended cements. There is some evidence to suggest that a coarsening of pore structure in blended cements may lead to onset of cracking at lower temperatures. The use of DTA/TGA was of little use in assessing the thermal history of concrete made with blended cements. Corner spalling and sloughing off, as observed in columns, was effectively reproduced in tests on small scale specimens and the crack distributions measured. Relationships between compressive strength/cracking and non-destructive methods of testing are discussed and an outline procedure for site investigations of fire damaged concrete is described.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Precise, up-to-date and increasingly detailed road maps are crucial for various advanced road applications, such as lane-level vehicle navigation, and advanced driver assistant systems. With the very high resolution (VHR) imagery from digital airborne sources, it will greatly facilitate the data acquisition, data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lane information from aerial images with employment of the object-oriented image analysis method. Our proposed algorithm starts with constructing the DSM and true orthophotos from the stereo images. The road lane details are detected using an object-oriented rule based image classification approach. Due to the affection of other objects with similar spectral and geometrical attributes, the extracted road lanes are filtered with the road surface obtained by a progressive two-class decision classifier. The generated road network is evaluated using the datasets provided by Queensland department of Main Roads. The evaluation shows completeness values that range between 76% and 98% and correctness values that range between 82% and 97%.
Resumo:
We describe the design and evaluation of a platform for networks of cameras in low-bandwidth, low-power sensor networks. In our work to date we have investigated two different DSP hardware/software platforms for undertaking the tasks of compression and object detection and tracking. We compare the relative merits of each of the hardware and software platforms in terms of both performance and energy consumption. Finally we discuss what we believe are the ongoing research questions for image processing in WSNs.
Resumo:
Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.
Resumo:
An automatic approach to road lane marking extraction from high-resolution aerial images is proposed, which can automatically detect the road surfaces in rural areas based on hierarchical image analysis. The procedure is facilitated by the road centrelines obtained from low-resolution images. The lane markings are further extracted on the generated road surfaces with 2D Gabor filters. The proposed method is applied on the aerial images of the Bruce Highway around Gympie, Queensland. Evaluation of the generated road surfaces and lane markings using four representative test fields has validated the proposed method.
Resumo:
True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%- 80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.
Resumo:
This paper presents the idea of a compendium of process technologies, i.e., a concise but comprehensive collection of techniques for process model analysis that support research on the design, execution, and evaluation of processes. The idea originated from observations on the evolution of process-related research disciplines. Based on these observations, we derive design goals for a compendium. Then, we present the jBPT library, which addresses these goals by means of an implementation of common analysis techniques in an open source codebase.
Resumo:
Microvessel density (MVD) is a widely used surrogate measure of angiogenesis in pathological specimens and tumour models. Measurement of MVD can be achieved by several methods. Automation of counting methods aims to increase the speed, reliability and reproducibility of these techniques. The image analysis system described here enables MVD measurement to be carried out with minimal expense in any reasonably equipped pathology department or laboratory. It is demonstrated that the system translates easily between tumour types which are suitably stained with minimal calibration. The aim of this paper is to offer this technique to a wider field of researchers in angiogenesis.
Resumo:
Most of the existing algorithms for approximate Bayesian computation (ABC) assume that it is feasible to simulate pseudo-data from the model at each iteration. However, the computational cost of these simulations can be prohibitive for high dimensional data. An important example is the Potts model, which is commonly used in image analysis. Images encountered in real world applications can have millions of pixels, therefore scalability is a major concern. We apply ABC with a synthetic likelihood to the hidden Potts model with additive Gaussian noise. Using a pre-processing step, we fit a binding function to model the relationship between the model parameters and the synthetic likelihood parameters. Our numerical experiments demonstrate that the precomputed binding function dramatically improves the scalability of ABC, reducing the average runtime required for model fitting from 71 hours to only 7 minutes. We also illustrate the method by estimating the smoothing parameter for remotely sensed satellite imagery. Without precomputation, Bayesian inference is impractical for datasets of that scale.