84 resultados para Levure
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Résumé: Les cellules germinales mâles remodèlent leur chromatine pour compacter leur noyau afin de protéger leur matériel génétique et assurer un transit optimal vers le gamète femelle. Il a été démontré que tous les spermatides de plusieurs mammifères, incluant l’homme et la souris, présentaient ce mécanisme de remodelage de la chromatine. Celui-ci est caractérisé par une augmentation transitoire de cassures d’ADN dont une quantité importante sont bicaténaires. Ce remodelage chromatinien a été étudié et semble être conservé chez plusieurs espèces, allant de l’algue à l’humain. Dans le contexte de la recherche fondamentale sur le phénomène de la spermiogenèse, il devient parfois très difficile d’investiguer certains aspects importants en vertu de l’impossibilité de réaliser des manipulations génétiques simples. Il est donc impératif de développer un nouveau modèle d’étude plus permissif afin de palier à ces difficultés encourues. Comme le processus de maturation des spores chez la levure à fission présente de grandes similitudes avec la spermiogenèse des mammifères, l’utilisation d’un modèle d’étude basé sur la sporulation de la levure à fission Schizosaccharomyces pombe a été proposée comme modèle comparatif de la spermatogenèse murine. À la suite de la synchronisation de la méiose de la souche S. pombe pat1-114, des analyses d’électrophorèse en champ pulsé (PFGE) et de qTUNEL ont permis de déterminer la présence de cassures bicaténaires transitoires de l’ADN lors de la maturation post-méiotique des ascospores nouvellement formés (t>7h). Des analyses par immunobuvardages dirigés contre le variant d’histones H2AS129p suggère la présence d’un remodelage chromatinien postméiotique dix heures suivant l’induction de la méiose, corroborant le modèle murin. Enfin, des analyses protéomiques couplées à l’analyse par spectrométrie de masse ont permis de proposer l’endonucléase Pnu1 comme candidat potentiellement responsable des cassures bicaténaires transitoires dans l’ADN des ascospores en maturation. En somme, bien que le processus de maturation des spores soit encore bien méconnu, quelques parallèles peuvent être tracés entre la maturation des ascospores de la levure à fission et la spermiogenèse des eucaryotes supérieurs. En identifiant un modèle simple du remodelage chromatinien au niveau de la spermiogenèse animale, on s’assurerait ainsi d’un outil beaucoup plus malléable et versatile pour l’étude fondamentale des événements survenant lors de la spermiogenèse humaine.
Resumo:
Résumé : Les télomères sont des structures nucléoprotéiques spécialisées qui assurent la stabilité du génome en protégeant les extrémités chromosomiques. Afin d’empêcher des activités indésirables, la réparation des dommages à l’ADN doit être convenablement régulée au niveau des télomères. Pourtant, il existe peu d’études de la réparation des dommages induits par les ultraviolets (UVs) dans un contexte télomérique. Le mécanisme de réparation par excision de nucléotides (NER pour « Nucleotide Excision Repair ») permet d’éliminer les photoproduits. La NER est un mécanisme très bien conservé de la levure à l’humain. Elle est divisée en deux sous voies : une réparation globale du génome (GG-NER) et une réparation couplée à la transcription (TC-NER) plus rapide et plus efficace. Dans notre modèle d’étude, la levure Saccharomyces cerevisiae, une forme compactée de la chromatine nommée plus fréquemment « hétérochromatine » a été décrite. Cette structure particulière est présente entre autres, au niveau des régions sous-télomériques des extrémités chromosomiques. La formation de cette chromatine particulière implique quatre protéines nommées Sir (« Silent Information Regulator »). Elle présente différentes marques épigénétiques dont l’effet est de réprimer la transcription. L’accès aux dommages par la machinerie de réparation est-il limité par cette chromatine compacte ? Nous avons donc étudié la réparation des lésions induites par les UVs dans différentes régions associées aux télomères, en absence ou en présence de protéines Sir. Nos données ont démontré une modulation de la NER par la chromatine, dépendante des nucléosomes stabilisés par les Sir, dans les régions sous-télomériques. La NER était moins efficace dans les extrémités chromosomiques que dans les régions plus proches du centromère. Cet effet était dépendant du complexe YKu de la coiffe télomérique, mais pas dépendant des protéines Sir. La transcription télomériques pourrait aider la réparation des photoproduits, par l’intermédiaire de la sous-voie de TC-NER, prévenant ainsi la formation de mutations dans les extrémités chromosomiques. Des ARN non codants nommés TERRA sont produits mais leur rôle n’est pas encore clair. Par nos analyses, nous avons confirmé que la transcription des TERRA faciliterait la NER dans les différentes régions sous-télomériques.
Resumo:
Chez Schizosaccharomyces pombe, le cycle méiotique est le mode de division cellulaire spécialisé qui permet la formation d’ascospores résistantes à différents stress lorsque les conditions environnementales ne sont pas propices à la multiplication cellulaire. Lors de mes travaux de thèse, mes objectifs consistaient à caractériser le rôle et le mécanisme d’action de la protéine Cuf2 lors du cycle méiotique chez S. pombe. Mes résultats ont montré que le gène cuf2[indice supérieur +] était exprimé exclusivement lors des divisions méiotiques et que la protéine se co-localisait de manière constitutive avec le matériel génétique. De plus, mes résultats ont dévoilé que Cuf2 participait à l’activation et à la répression de plusieurs gènes méiotiques selon un mécanisme de nature transcriptionnelle en s’associant spécifiquement avec leur région promotrice. Par la suite, mes résultats ont mis en évidence que Cuf2 interagissait physiquement avec Mei4, un facteur de transcription méiose-spécifique, au noyau des cellules méiotiques. Notamment, mes résultats ont montré que la présence de Mei4 et de son motif de liaison à l’ADN dénommé FLEX étaient nécessaires afin que Cuf2 puisse s’associer au promoteur de son gène cible fzr1[indice supérieur +] afin d’en activer l’expression. L’ensemble de mes résultats indiquent que Cuf2 et Mei4 interagissent aux promoteurs de certains gènes lors des divisions méiotiques afin d’en co-activer l’expression. D’ailleurs, mes résultats ont également montré que la fonction de Cuf2 était importante à la formation d’ascospores et à leur viabilité ; en absence de Cuf2, la majorité des ascospores présentent diverses aberrations et plus de la moitié d’entre elles sont non-viables. Globalement, mes résultats démontrent que Cuf2 est un régulateur critique de l’expression génique lors du cycle méiotique et que cette fonction est essentielle à la sporulation chez S. pombe.
Resumo:
Les anthracyclines, comme la doxorubicine (DOX) ou la daunorubicine (DNR), sont utilisées dans le traitement d’une grande variété de cancers allant des lymphomes, au cancer du sein, en passant par certaines leucémies. Encore aujourd’hui, beaucoup pensent que les anthracyclines entrent dans les cellules par diffusion passive, toutefois, la plupart de ces mêmes personnes sont d’accord pour dire que la p-glycoprotéine est responsable d’exporter ces molécules hors de la cellule. Mais pourquoi une molécule aurait besoin d’un transporteur pour sortir de la cellule, et pas pour y entrer ? Qu’est-ce qui ferait que la diffusion passive fonctionnerait dans un sens, mais pas dans l’autre, d’autant que l’entrée des anthracyclines dans les cellules est très rapide ? Nous pensons qu’il existe bel et bien un transporteur responsable de faire passer les anthracyclines du milieu extracellulaire au cytoplasme, et nous voulons développer un modèle de levure qui permettrait de déterminer si une protéine, un transporteur, issue d’un autre organisme eucaryote est en mesure de transporter la DOX à l’intérieur de la cellule. Pour ce faire, nous avons rassemblé un groupe de mutants présentant une déficience dans l’absorption d’autres molécules chargées positivement telles que la bléomycine ou le NaD1 et avons déterminé le taux d’absorption de DOX de chacun de ces mutants. Les simples mutants sam3Δ ou dur3Δ n’ont montré qu’une faible réduction de l’absorption de DOX, voire, aucune, par rapport à la souche parentale. Si le double mutant sam3Δdur3Δ a montré une réduction relativement importante de l’absorption de DOX, c’est le mutant agp2Δ qui présentait la plus grande réduction d’absorption de DOX, ainsi qu’une résistance notable à son effet létal. Nous avons utilisé, par la suite, ce mutant pour exprimer, à l’aide d’un vecteur d’expression, une protéine du ver Caenorhabditis elegans, OCT-1 (CeOCT-1). Les résultats ont montré que cette protéine était en mesure de restaurer l’absorption de DOX, compromise chez le mutant agp2Δ ainsi que d’augmenter la sensibilité de la souche parentale à son effet létal, lorsqu’exprimée chez celle-ci. Cela suggère que CeOCT-1 est un transporteur fonctionnel de DOX et contredit également le dogme selon lequel les anthracyclines entrent dans les cellules par diffusion passive.
Resumo:
Les anthracyclines, comme la doxorubicine (DOX) ou la daunorubicine (DNR), sont utilisées dans le traitement d’une grande variété de cancers allant des lymphomes, au cancer du sein, en passant par certaines leucémies. Encore aujourd’hui, beaucoup pensent que les anthracyclines entrent dans les cellules par diffusion passive, toutefois, la plupart de ces mêmes personnes sont d’accord pour dire que la p-glycoprotéine est responsable d’exporter ces molécules hors de la cellule. Mais pourquoi une molécule aurait besoin d’un transporteur pour sortir de la cellule, et pas pour y entrer ? Qu’est-ce qui ferait que la diffusion passive fonctionnerait dans un sens, mais pas dans l’autre, d’autant que l’entrée des anthracyclines dans les cellules est très rapide ? Nous pensons qu’il existe bel et bien un transporteur responsable de faire passer les anthracyclines du milieu extracellulaire au cytoplasme, et nous voulons développer un modèle de levure qui permettrait de déterminer si une protéine, un transporteur, issue d’un autre organisme eucaryote est en mesure de transporter la DOX à l’intérieur de la cellule. Pour ce faire, nous avons rassemblé un groupe de mutants présentant une déficience dans l’absorption d’autres molécules chargées positivement telles que la bléomycine ou le NaD1 et avons déterminé le taux d’absorption de DOX de chacun de ces mutants. Les simples mutants sam3Δ ou dur3Δ n’ont montré qu’une faible réduction de l’absorption de DOX, voire, aucune, par rapport à la souche parentale. Si le double mutant sam3Δdur3Δ a montré une réduction relativement importante de l’absorption de DOX, c’est le mutant agp2Δ qui présentait la plus grande réduction d’absorption de DOX, ainsi qu’une résistance notable à son effet létal. Nous avons utilisé, par la suite, ce mutant pour exprimer, à l’aide d’un vecteur d’expression, une protéine du ver Caenorhabditis elegans, OCT-1 (CeOCT-1). Les résultats ont montré que cette protéine était en mesure de restaurer l’absorption de DOX, compromise chez le mutant agp2Δ ainsi que d’augmenter la sensibilité de la souche parentale à son effet létal, lorsqu’exprimée chez celle-ci. Cela suggère que CeOCT-1 est un transporteur fonctionnel de DOX et contredit également le dogme selon lequel les anthracyclines entrent dans les cellules par diffusion passive.
Resumo:
Résumé Le transfert du phosphate des racines vers les feuilles s'effectue par la voie du xylème. Il a été précédemment démontré que la protéine AtPHO1 était indispensable au transfert du phosphate dans les vaisseaux du xylème des racines chez la plante modèle Arabidopsis thaliana. Le séquençage et l'annotation du génome d'Arabidopsis ont permis d'identifier dix séquences présentant un niveau de similarité significatif avec le gène AtPHO1 et constituant une nouvelle famille de gène appelé la famille de AtPHO1. Basée sur une étude moléculaire et génétique, cette thèse apporte des éléments de réponse pour déterminer le rôle des membres de ia famille de AtPHO1 chez Arabidopsis, inconnue à ce jour. Dans un premier temps, une analyse bioinformatique des séquences protéiques des membres de la famille de AtPHO1 a révélé la présence dans leur région N-terminale d'un domaine nommé SPX. Ce dernier est conservé parmi de nombreuses protéines impliquées dans l'homéostasie du phosphate chez la levure, renforçant ainsi l'hypothèse que les membres de la famille de AtPHO1 auraient comme AtPHO1 un rôle dans l'équilibre du phosphate dans la plante. En parallèle, la localisation tissulaire de l'expression des gènes AtPHO dans Arabidopsis a été identifiée par l'analyse de plantes transgéniques exprimant le gène rapporteur uidA sous le contrôle des promoteurs respectifs des gènes AtPHO. Un profil d'expression de chaque gène AtPHO au cours du développement de la plante a été obtenu. Une expression prédominante au niveau des tissus vasculaires des racines, des feuilles, des tiges et des fleurs a été observée, suggérant que les gènes AtPHO pourraient avoir des fonctions redondantes au niveau du transfert de phosphate dans le cylindre vasculaire de ces différents organes. Toutefois, plusieurs régions promotrices des gènes AtPHO contrôlent également un profil d'expression GUS non-vasculaire, indiquant un rôle putatif des gènes AtPHO dans l'acquisition ou le recyclage de phosphate dans la plante. Dans un deuxième temps, l'analyse de l'expression des gènes AtPHO durant une carence en phosphate a établi que seule l'expression des gènes AtPHO1, AtPHO1; H1 et AtPHO1; H10 est régulée par cette carence. Une étude approfondie de leur expression en réponse à des traitements affectant l'homéostasie du phosphate dans la plante a ensuite démontré leur régulation par différentes voies de signalisation. Ensuite, une analyse détaillée de la régulation de l'expression du gène AtPHO1; H1O dans des feuilles d'Arabidopsis blessées ou déshydratées a révélé que ce gène constitue le premìer gène marqueur d'une nouvelle voie de signalisation induite par l'OPDA, pas par le JA et dépendante de la protéine COI1. Ces résultats démontrent pour la première fois que l'OPDA et le JA peuvent activer différents gènes via des voies de signalisation dépendantes de COI1. Enfin, cette thèse révèle l'identification d'un nouveau rôle de la protéine AtPHO1 dans la régulation de l'action de l'ABA au cours des processus de fermeture stomatique et de germination des graines chez Arabidopsis. Bien que les fonctions exactes des protéines AtPHO restent à être déterminées, ce travail de thèse suggère leur implication dans la propagation de différents signaux dans la plante via la modulation du potentiel membranaire et/ou l'affectation de la composition en ions des cellules comme le font de nombreux transporteurs ou régulateur du transport d'ions. Summary Phosphate is transferred from the roots to the shoot via the xylem. The requirement for AtPHO1 protein to transfer phosphate to the xylem vessels of the root has been previously demonstrated in Arabidopsis thaliana. The sequencing and the annotation of the Arabidopsis genome had allowed the identification of ten sequences that show a significant level of similarity with the AtPHO1 gene. These 10 genes, of unknown functions, constitute a new gene family called the AtPHO1 gene family. Based on a molecular and genetics study, this thesis reveals some information needed to understand the role of the AtPHO1 family members in the plant Arabidopsis. First, a bioinformatics study revealed that the AtPHO sequences contained, in the N-terminal hydrophilic region, a motif called SPX and conserved among multiple proteins involved in phosphate homeostasis in yeast. This finding reinforces the hypothesis that all AtPHO1 family members have, as AtPHO1, a role in phosphate homeostasis. In parallel, we identified the pattern of expression of AtPHO genes in Arabidopsis via analysis of transgenic plants expressing the uidA reporter gene under the control of respective AtPHO promoter regions. The results exhibit a predominant expression of AtPHO genes in vascular tissues of all organs of the plant, implying that these AtPHO genes could have redundant functions in the transfer of phosphate to the vascular cylinder of various organs. The GUS expression pattern for several AtPHO promoter regions was also detected in non-vascular tissue indicating a broad role of AtPHO genes in the acquisition or in the recycling of phosphate in the plant. In a second step, the analysis of the expression of AtPHO genes during phosphate starvation established that only the expression of the AtPHO1, AtPHO1; H1 and AtPHO1; H10 genes were regulated by Pi starvation. Interestingly, different signalling pathways appeared to regulate these three genes during various treatments affecting Pi homeostasis in the plant. The third chapter presents a detailed analysis of the signalling pathways regulating the expression of the AtPHO1; H10 gene in Arabidopsis leaves during wound and dehydrated stresses. Surprisingly, the expression of AtPHO1; H10 was found to be regulated by OPDA (the precursor of JA) but not by JA itself and via the COI1 protein (the central regulator of the JA signalling pathway). These results demonstrated for the first time that OPDA and JA could activate distinct genes via COI1-dependent pathways. Finally, this thesis presents the identification of a novel role of the AtPHO1 protein in the regulation of ABA action in Arabidopsis guard cells and during seed germination. Although the exact role and function of AtPHO1 still need to be determined, these last findings suggest that AtPHO1 and by extension other AtPHO proteins could mediate the propagation of various signals in the plant by modulating the membrane potential and/or by affecting cellular ion composition, as it is the case for many ion transporters or regulators of ion transport.