812 resultados para Levenberg-Marquardt algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topic of the Ph.D project focuses on the modelling of the soil-water dynamics inside an instrumented embankment section along Secchia River (Cavezzo (MO)) in the period from 2017 to 2018 and the quantification of the performance of the direct and indirect simulations . The commercial code Hydrus2D by Pc-Progress has been chosen to run the direct simulations. Different soil-hydraulic models have been adopted and compared. The parameters of the different hydraulic models are calibrated using a local optimization method based on the Levenberg - Marquardt algorithm implemented in the Hydrus package. The calibration program is carried out using different types of dataset of observation points, different weighting distributions, different combinations of optimized parameters and different initial sets of parameters. The final goal is an in-depth study of the potentialities and limits of the inverse analysis when applied to a complex geotechnical problem as the case study. The second part of the research focuses on the effects of plant roots and soil-vegetation-atmosphere interaction on the spatial and temporal distribution of pore water pressure in soil. The investigated soil belongs to the West Charlestown Bypass embankment, Newcastle, Australia, that showed in the past years shallow instabilities and the use of long stem planting is intended to stabilize the slope. The chosen plant species is the Malaleuca Styphelioides, native of eastern Australia. The research activity included the design and realization of a specific large scale apparatus for laboratory experiments. Local suction measurements at certain intervals of depth and radial distances from the root bulb are recorded within the vegetated soil mass under controlled boundary conditions. The experiments are then reproduced numerically using the commercial code Hydrus 2D. Laboratory data are used to calibrate the RWU parameters and the parameters of the hydraulic model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho são apresentadas expressões exatas e aproximações quadráticas das conhecidas equações de Knott-Zöeppritz, que calculam as amplitudes dos coeficientes Rpp e Rsp em termos dos contrastes médios relativos, bem como é procedida a inversão dos parâmetros de dados de AVO a partir destas aproximações quadráticas. Nesta inversão é utilizado o algoritmo de Levenberg-Marquardt, e são considerados apenas os eventos refletidos Rpp e convertidos Rsp, não associados. Nos estudos dos parâmetros físicos dos meios contrastes de impedância (δz), módulo de cisalhamento (δμ) e velocidade da onda p (δα), verificou-se quais desses parâmetros podem ser invertidos. Os resultados obtidos mostram que o contraste de impedância (δz) é muito bem resolvido estando ele relacionado com o contraste de velocidade da onda p (δα) ou com o contraste de cisalhamento (δμ), no caso de eventos refletidos considerando modelos de alto, moderado e baixo contrastes. Por outro lado ao se fixar o contraste de impedância e relacionar os outros dois parâmetros em consideração, os resultados mostram que esses são mal resolvidos, ou seja, a região de ambiguidade torna-se muito grande e os parâmetros tornam-se ambíguos e instáveis. No caso do evento convertido e na combinação do evento refletido com o convertido, para os modelos de baixo e moderado contrastes, (δz) é muito bem resolvido, caso que não acontece para modelo de alto contraste. Diante desses resultados verifica-se que no procedimento de inversão quadrática de dados de AVO, fixado (δμ), a recuperação dos dois parâmetros variados é muito boa, no caso do evento refletido, e razoavelmente boa no caso do evento convertido, por esse motivo optou-se pela fixação do módulo de cisalhamento.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neste trabalho pretende-se introduzir os conceitos associados às redes neuronais e a sua aplicação no controlo de sistemas, neste caso na área da robótica autónoma. Foi utilizado um AGV de modo a testar experimentalmente um controlo através de uma rede neuronal artificial. A grande vantagem das redes neuronais artificiais é estas poderem ser ensinadas a funcionarem como se pretende. A partir desta caraterística foram efetuadas duas abordagens na implementação do AGV disponibilizado. A primeira abordagem ensinava a rede neuronal a funcionar como o controlo por lógica difusa que foi implementado no AGV aquando do seu desenvolvimento. A segunda abordagem foi ensinar a rede neuronal artificial a funcionar a partir de dados retirados de um controlo remoto simples implementado no AGV. Ambas as abordagens foram inicialmente implementadas e simuladas no MATLAB, antes de se efetuar a sua implementação no AGV. O MATLAB é utilizado para efetuar o treino das redes neuronais multicamada proactivas através do algoritmo de treino por retropropagação de Levenberg-Marquardt. A implementação de uma rede neuronal artificial na primeira abordagem foi implementada em três fases, MATLAB, posteriormente linguagem de programação C no computador e por fim, microcontrolador PIC no AGV, permitindo assim diferenciar o desenvolvimento destas técnicas em várias plataformas. Durante o desenvolvimento da segunda abordagem foi desenvolvido uma aplicação Android que permite monitorizar e controlar o AGV remotamente. Os resultados obtidos pela implementação da rede neuronal a partir do controlo difuso e do controlo remoto foram satisfatórios, pois o AGV percorria os percursos testados corretamente, em ambos os casos. Por fim concluiu-se que é viável a aplicação das redes neuronais no controlo de um AGV. Mais ainda, é possível utilizar o sistema desenvolvido para implementar e testar novas RNA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Résumé Des développements antérieurs, au sein de l'Institut de Géophysique de Lausanne, ont permis de développer des techniques d'acquisition sismique et de réaliser l'interprétation des données sismique 2D et 3D pour étudier la géologie de la région et notamment les différentes séquences sédimentaires du Lac Léman. Pour permettre un interprétation quantitative de la sismique en déterminant des paramètres physiques des sédiments la méthode AVO (Amplitude Versus Offset) a été appliquée. Deux campagnes sismiques lacustres, 2D et 3D, ont été acquises afin de tester la méthode AVO dans le Grand Lac sur les deltas des rivières. La géométrie d'acquisition a été repensée afin de pouvoir enregistrer les données à grands déports. Les flûtes sismiques, mises bout à bout, ont permis d'atteindre des angles d'incidence d'environ 40˚ . Des récepteurs GPS spécialement développés à cet effet, et disposés le long de la flûte, ont permis, après post-traitement des données, de déterminer la position de la flûte avec précision (± 0.5 m). L'étalonnage de nos hydrophones, réalisé dans une chambre anéchoïque, a permis de connaître leur réponse en amplitude en fonction de la fréquence. Une variation maximale de 10 dB a été mis en évidence entre les capteurs des flûtes et le signal de référence. Un traitement sismique dont l'amplitude a été conservée a été appliqué sur les données du lac. L'utilisation de l'algorithme en surface en consistante a permis de corriger les variations d'amplitude des tirs du canon à air. Les sections interceptes et gradients obtenues sur les deltas de l'Aubonne et de la Dranse ont permis de produire des cross-plots. Cette représentation permet de classer les anomalies d'amplitude en fonction du type de sédiments et de leur contenu potentiel en gaz. L'un des attributs qui peut être extrait des données 3D, est l'amplitude de la réflectivité d'une interface sismique. Ceci ajoute une composante quantitative à l'interprétation géologique d'une interface. Le fond d'eau sur le delta de l'Aubonne présente des anomalies en amplitude qui caractérisent les chenaux. L'inversion de l'équation de Zoeppritz par l'algorithme de Levenberg-Marquardt a été programmée afin d'extraire les paramètres physiques des sédiments sur ce delta. Une étude statistique des résultats de l'inversion permet de simuler la variation de l'amplitude en fonction du déport. On a obtenu un modèle dont la première couche est l'eau et dont la seconde est une couche pour laquelle V P = 1461 m∕s, ρ = 1182 kg∕m3 et V S = 383 m∕s. Abstract A system to record very high resolution (VHR) seismic data on lakes in 2D and 3D was developed at the Institute of Geophysics, University of Lausanne. Several seismic surveys carried out on Lake Geneva helped us to better understand the geology of the area and to identify sedimentary sequences. However, more sophisticated analysis of the data such as the AVO (Amplitude Versus Offset) method provides means of deciphering the detailed structure of the complex Quaternary sedimentary fill of the Lake Geneva trough. To study the physical parameters we applied the AVO method at some selected places of sediments. These areas are the Aubonne and Dranse River deltas where the configurations of the strata are relatively smooth and the discontinuities between them easy to pick. A specific layout was developed to acquire large incidence angle. 2D and 3D seismic data were acquired with streamers, deployed end to end, providing incidence angle up to 40˚ . One or more GPS antennas attached to the streamer enabled us to calculate individual hydrophone positions with an accuracy of 50 cm after post-processing of the navigation data. To ensure that our system provides correct amplitude information, our streamer sensors were calibrated in an anechoic chamber using a loudspeaker as a source. Amplitude variations between the each hydrophone were of the order of 10 dB. An amplitude correction for each hydrophone was computed and applied before processing. Amplitude preserving processing was then carried out. Intercept vs. gradient cross-plots enable us to determine that both geological discontinuities (lacustrine sediments/moraine and moraine/molasse) have well defined trends. A 3D volume collected on the Aubonne river delta was processed in order ro obtain AVO attributes. Quantitative interpretation using amplitude maps were produced and amplitude maps revealed high reflectivity in channels. Inversion of the water bottom of the Zoeppritz equation using the Levenberg-Marquadt algorithm was carried out to estimate V P , V S and ρ of sediments immediately under the lake bottom. Real-data inversion gave, under the water layer, a mud layer with V P = 1461 m∕s, ρ = 1182 kg∕m3 et V S = 383 m∕s.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The application process of fluid fertilizers through variable rates implemented by classical techniques with feedback and conventional equipments can be inefficient or unstable. This paper proposes an open-loop control system based on artificial neural network of the type multilayer perceptron for the identification and control of the fertilizer flow rate. The network training is made by the algorithm of Levenberg-Marquardt with training data obtained from measurements. Preliminary results indicate a fast, stable and low cost control system for precision fanning. Copyright (C) 2000 IFAC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Geologia Regional - IGCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The grinding operation gives workpieces their final finish, minimizing surface roughness through the interaction between the abrasive grains of a tool (grinding wheel) and the workpiece. However, excessive grinding wheel wear due to friction renders the tool unsuitable for further use, thus requiring the dressing operation to remove and/or sharpen the cutting edges of the worn grains to render them reusable. The purpose of this study was to monitor the dressing operation using the acoustic emission (AE) signal and statistics derived from this signal, classifying the grinding wheel as sharp or dull by means of artificial neural networks. An aluminum oxide wheel installed on a surface grinding machine, a signal acquisition system, and a single-point dresser were used in the experiments. Tests were performed varying overlap ratios and dressing depths. The root mean square values and two additional statistics were calculated based on the raw AE data. A multilayer perceptron neural network was used with the Levenberg-Marquardt learning algorithm, whose inputs were the aforementioned statistics. The results indicate that this method was successful in classifying the conditions of the grinding wheel in the dressing process, identifying the tool as "sharp''(with cutting capacity) or "dull''(with loss of cutting capacity), thus reducing the time and cost of the operation and minimizing excessive removal of abrasive material from the grinding wheel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dentro de los materiales estructurales, el magnesio y sus aleaciones están siendo el foco de una de profunda investigación. Esta investigación está dirigida a comprender la relación existente entre la microestructura de las aleaciones de Mg y su comportamiento mecánico. El objetivo es optimizar las aleaciones actuales de magnesio a partir de su microestructura y diseñar nuevas aleaciones. Sin embargo, el efecto de los factores microestructurales (como la forma, el tamaño, la orientación de los precipitados y la morfología de los granos) en el comportamiento mecánico de estas aleaciones está todavía por descubrir. Para conocer mejor de la relación entre la microestructura y el comportamiento mecánico, es necesaria la combinación de técnicas avanzadas de caracterización experimental como de simulación numérica, a diferentes longitudes de escala. En lo que respecta a las técnicas de simulación numérica, la homogeneización policristalina es una herramienta muy útil para predecir la respuesta macroscópica a partir de la microestructura de un policristal (caracterizada por el tamaño, la forma y la distribución de orientaciones de los granos) y el comportamiento del monocristal. La descripción de la microestructura se lleva a cabo mediante modernas técnicas de caracterización (difracción de rayos X, difracción de electrones retrodispersados, así como con microscopia óptica y electrónica). Sin embargo, el comportamiento del cristal sigue siendo difícil de medir, especialmente en aleaciones de Mg, donde es muy complicado conocer el valor de los parámetros que controlan el comportamiento mecánico de los diferentes modos de deslizamiento y maclado. En la presente tesis se ha desarrollado una estrategia de homogeneización computacional para predecir el comportamiento de aleaciones de magnesio. El comportamiento de los policristales ha sido obtenido mediante la simulación por elementos finitos de un volumen representativo (RVE) de la microestructura, considerando la distribución real de formas y orientaciones de los granos. El comportamiento del cristal se ha simulado mediante un modelo de plasticidad cristalina que tiene en cuenta los diferentes mecanismos físicos de deformación, como el deslizamiento y el maclado. Finalmente, la obtención de los parámetros que controlan el comportamiento del cristal (tensiones críticas resueltas (CRSS) así como las tasas de endurecimiento para todos los modos de maclado y deslizamiento) se ha resuelto mediante la implementación de una metodología de optimización inversa, una de las principales aportaciones originales de este trabajo. La metodología inversa pretende, por medio del algoritmo de optimización de Levenberg-Marquardt, obtener el conjunto de parámetros que definen el comportamiento del monocristal y que mejor ajustan a un conjunto de ensayos macroscópicos independientes. Además de la implementación de la técnica, se han estudiado tanto la objetividad del metodología como la unicidad de la solución en función de la información experimental. La estrategia de optimización inversa se usó inicialmente para obtener el comportamiento cristalino de la aleación AZ31 de Mg, obtenida por laminado. Esta aleación tiene una marcada textura basal y una gran anisotropía plástica. El comportamiento de cada grano incluyó cuatro mecanismos de deformación diferentes: deslizamiento en los planos basal, prismático, piramidal hc+ai, junto con el maclado en tracción. La validez de los parámetros resultantes se validó mediante la capacidad del modelo policristalino para predecir ensayos macroscópicos independientes en diferentes direcciones. En segundo lugar se estudió mediante la misma estrategia, la influencia del contenido de Neodimio (Nd) en las propiedades de una aleación de Mg-Mn-Nd, obtenida por extrusión. Se encontró que la adición de Nd produce una progresiva isotropización del comportamiento macroscópico. El modelo mostró que este incremento de la isotropía macroscópica era debido tanto a la aleatoriedad de la textura inicial como al incremento de la isotropía del comportamiento del cristal, con valores similares de las CRSSs de los diferentes modos de deformación. Finalmente, el modelo se empleó para analizar el efecto de la temperatura en el comportamiento del cristal de la aleación de Mg-Mn-Nd. La introducción en el modelo de los efectos non-Schmid sobre el modo de deslizamiento piramidal hc+ai permitió capturar el comportamiento mecánico a temperaturas superiores a 150_C. Esta es la primera vez, de acuerdo con el conocimiento del autor, que los efectos non-Schmid han sido observados en una aleación de Magnesio. The study of Magnesium and its alloys is a hot research topic in structural materials. In particular, special attention is being paid in understanding the relationship between microstructure and mechanical behavior in order to optimize the current alloy microstructures and guide the design of new alloys. However, the particular effect of several microstructural factors (precipitate shape, size and orientation, grain morphology distribution, etc.) in the mechanical performance of a Mg alloy is still under study. The combination of advanced characterization techniques and modeling at several length scales is necessary to improve the understanding of the relation microstructure and mechanical behavior. Respect to the simulation techniques, polycrystalline homogenization is a very useful tool to predict the macroscopic response from polycrystalline microstructure (grain size, shape and orientation distributions) and crystal behavior. The microstructure description is fully covered with modern characterization techniques (X-ray diffraction, EBSD, optical and electronic microscopy). However, the mechanical behaviour of single crystals is not well-known, especially in Mg alloys where the correct parameterization of the mechanical behavior of the different slip/twin modes is a very difficult task. A computational homogenization framework for predicting the behavior of Magnesium alloys has been developed in this thesis. The polycrystalline behavior was obtained by means of the finite element simulation of a representative volume element (RVE) of the microstructure including the actual grain shape and orientation distributions. The crystal behavior for the grains was accounted for a crystal plasticity model which took into account the physical deformation mechanisms, e.g. slip and twinning. Finally, the problem of the parametrization of the crystal behavior (critical resolved shear stresses (CRSS) and strain hardening rates of all the slip and twinning modes) was obtained by the development of an inverse optimization methodology, one of the main original contributions of this thesis. The inverse methodology aims at finding, by means of the Levenberg-Marquardt optimization algorithm, the set of parameters defining crystal behavior that best fit a set of independent macroscopic tests. The objectivity of the method and the uniqueness of solution as function of the input information has been numerically studied. The inverse optimization strategy was first used to obtain the crystal behavior of a rolled polycrystalline AZ31 Mg alloy that showed a marked basal texture and a strong plastic anisotropy. Four different deformation mechanisms: basal, prismatic and pyramidal hc+ai slip, together with tensile twinning were included to characterize the single crystal behavior. The validity of the resulting parameters was proved by the ability of the polycrystalline model to predict independent macroscopic tests on different directions. Secondly, the influence of Neodymium (Nd) content on an extruded polycrystalline Mg-Mn-Nd alloy was studied using the same homogenization and optimization framework. The effect of Nd addition was a progressive isotropization of the macroscopic behavior. The model showed that this increase in the macroscopic isotropy was due to a randomization of the initial texture and also to an increase of the crystal behavior isotropy (similar values of the CRSSs of the different modes). Finally, the model was used to analyze the effect of temperature on the crystal behaviour of a Mg-Mn-Nd alloy. The introduction in the model of non-Schmid effects on the pyramidal hc+ai slip allowed to capture the inverse strength differential that appeared, between the tension and compression, above 150_C. This is the first time, to the author's knowledge, that non-Schmid effects have been reported for Mg alloys.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Os métodos de ondas superficiais com ênfase nas ondas Rayleigh foram utilizados como o núcleo desse trabalho de Doutorado. Inicialmente, as ondas Rayleigh foram modeladas permitindo o estudo de sensibilidade de suas curvas de dispersão sob diferentes configurações de parâmetros físicos representando diversos modelos de camadas, em que pôde ser observado parâmetros com maior e menor sensibilidade e também alguns efeitos provocados por baixas razões de Poisson. Além disso, na fase de inversão dos dados a modelagem das ondas Rayleigh foi utilizada para a construção da função objeto, que agregada ao método de mínimos quadrados, a partir do método de Levenberg-Marquardt, permitiu a implementação de um algoritmo de busca local responsável pela inversão de dados das ondas superficiais. Por se tratar de um procedimento de busca local, o algoritmo de inversão foi complementado por uma etapa de pré-inversão com a geração de um modelo inicial para que o procedimento de inversão fosse mais rápido e eficiente. Visando uma eficiência ainda maior do procedimento de inversão, principalmente em modelos de camadas com inversão de velocidades, foi implementado um algoritmo de pós-inversão baseado em um procedimento de tentativa e erro minimizando os valores relativos da raiz quadrada do erro quadrático médio (REQMr) da inversão dos dados. Mais de 50 modelos de camadas foram utilizados para testar a modelagem, a pré-inversão, inversão e pós-inversão dos dados permitindo o ajuste preciso de parâmetros matemáticos e físicos presentes nos diversos scripts implementados em Matlab. Antes de inverter os dados adquiridos em campo, os mesmos precisaram ser tratados na etapa de processamento de dados, cujo objetivo principal é a extração da curva de dispersão originada devido às ondas superficiais. Para isso, foram implementadas, também em Matlab, três metodologias de processamento com abordagens matemáticas distintas. Essas metodologias foram testadas e avaliadas com dados sintéticos e reais em que foi possível constatar as virtudes e deficiências de cada metodologia estudada, bem como as limitações provocadas pela discretização dos dados de campo. Por último, as etapas de processamento, pré-inversão, inversão e pós-inversão dos dados foram unificadas para formar um programa de tratamento de dados de ondas superficiais (Rayleigh). Ele foi utilizado em dados reais originados pelo estudo de um problema geológico na Bacia de Taubaté em que foi possível mapear os contatos geológicos ao longo dos pontos de aquisição sísmica e compará-los a um modelo inicial existente baseado em observações geomorfológicas da área de estudos, mapa geológico da região e informações geológicas globais e locais dos movimentos tectônicos na região. As informações geofísicas associadas às geológicas permitiram a geração de um perfil analítico da região de estudos com duas interpretações geológicas confirmando a suspeita de neotectônica na região em que os contatos geológicos entre os depósitos Terciários e Quaternários foram identificados e se encaixaram no modelo inicial de hemi-graben com mergulho para Sudeste.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.