992 resultados para Level-sets
Resumo:
Demosaicking is a particular case of interpolation problems where, from a scalar image in which each pixel has either the red, the green or the blue component, we want to interpolate the full-color image. State-of-the-art demosaicking algorithms perform interpolation along edges, but these edges are estimated locally. We propose a level-set-based geometric method to estimate image edges, inspired by the image in-painting literature. This method has a time complexity of O(S) , where S is the number of pixels in the image, and compares favorably with the state-of-the-art algorithms both visually and in most relevant image quality measures.
Resumo:
Consider the celebrated Lyness recurrence $x_{n+2}=(a+x_{n+1})/x_{n}$ with $a\in\Q$. First we prove that there exist initial conditions and values of $a$ for which it generates periodic sequences of rational numbers with prime periods $1,2,3,5,6,7,8,9,10$ or $12$ and that these are the only periods that rational sequences $\{x_n\}_n$ can have. It is known that if we restrict our attention to positive rational values of $a$ and positive rational initial conditions the only possible periods are $1,5$ and $9$. Moreover 1-periodic and 5-periodic sequences are easily obtained. We prove that for infinitely many positive values of $a,$ positive 9-period rational sequences occur. This last result is our main contribution and answers an open question left in previous works of Bastien \& Rogalski and Zeeman. We also prove that the level sets of the invariant associated to the Lyness map is a two-parameter family of elliptic curves that is a universal family of the elliptic curves with a point of order $n, n\ge5,$ including $n$ infinity. This fact implies that the Lyness map is a universal normal form for most birrational maps on elliptic curves.
Resumo:
Since its introduction, fuzzy set theory has become a useful tool in the mathematical modelling of problems in Operations Research and many other fields. The number of applications is growing continuously. In this thesis we investigate a special type of fuzzy set, namely fuzzy numbers. Fuzzy numbers (which will be considered in the thesis as possibility distributions) have been widely used in quantitative analysis in recent decades. In this work two measures of interactivity are defined for fuzzy numbers, the possibilistic correlation and correlation ratio. We focus on both the theoretical and practical applications of these new indices. The approach is based on the level-sets of the fuzzy numbers and on the concept of the joint distribution of marginal possibility distributions. The measures possess similar properties to the corresponding probabilistic correlation and correlation ratio. The connections to real life decision making problems are emphasized focusing on the financial applications. We extend the definitions of possibilistic mean value, variance, covariance and correlation to quasi fuzzy numbers and prove necessary and sufficient conditions for the finiteness of possibilistic mean value and variance. The connection between the concepts of probabilistic and possibilistic correlation is investigated using an exponential distribution. The use of fuzzy numbers in practical applications is demonstrated by the Fuzzy Pay-Off method. This model for real option valuation is based on findings from earlier real option valuation models. We illustrate the use of number of different types of fuzzy numbers and mean value concepts with the method and provide a real life application.
Resumo:
L'imagerie intravasculaire ultrasonore (IVUS) est une technologie médicale par cathéter qui produit des images de coupe des vaisseaux sanguins. Elle permet de quantifier et d'étudier la morphologie de plaques d'athérosclérose en plus de visualiser la structure des vaisseaux sanguins (lumière, intima, plaque, média et adventice) en trois dimensions. Depuis quelques années, cette méthode d'imagerie est devenue un outil de choix en recherche aussi bien qu'en clinique pour l'étude de la maladie athérosclérotique. L'imagerie IVUS est par contre affectée par des artéfacts associés aux caractéristiques des capteurs ultrasonores, par la présence de cônes d'ombre causés par les calcifications ou des artères collatérales, par des plaques dont le rendu est hétérogène ou par le chatoiement ultrasonore (speckle) sanguin. L'analyse automatisée de séquences IVUS de grande taille représente donc un défi important. Une méthode de segmentation en trois dimensions (3D) basée sur l'algorithme du fast-marching à interfaces multiples est présentée. La segmentation utilise des attributs des régions et contours des images IVUS. En effet, une nouvelle fonction de vitesse de propagation des interfaces combinant les fonctions de densité de probabilité des tons de gris des composants de la paroi vasculaire et le gradient des intensités est proposée. La segmentation est grandement automatisée puisque la lumière du vaisseau est détectée de façon entièrement automatique. Dans une procédure d'initialisation originale, un minimum d'interactions est nécessaire lorsque les contours initiaux de la paroi externe du vaisseau calculés automatiquement sont proposés à l'utilisateur pour acceptation ou correction sur un nombre limité d'images de coupe longitudinale. La segmentation a été validée à l'aide de séquences IVUS in vivo provenant d'artères fémorales provenant de différents sous-groupes d'acquisitions, c'est-à-dire pré-angioplastie par ballon, post-intervention et à un examen de contrôle 1 an suivant l'intervention. Les résultats ont été comparés avec des contours étalons tracés manuellement par différents experts en analyse d'images IVUS. Les contours de la lumière et de la paroi externe du vaisseau détectés selon la méthode du fast-marching sont en accord avec les tracés manuels des experts puisque les mesures d'aire sont similaires et les différences point-à-point entre les contours sont faibles. De plus, la segmentation par fast-marching 3D s'est effectuée en un temps grandement réduit comparativement à l'analyse manuelle. Il s'agit de la première étude rapportée dans la littérature qui évalue la performance de la segmentation sur différents types d'acquisition IVUS. En conclusion, la segmentation par fast-marching combinant les informations des distributions de tons de gris et du gradient des intensités des images est précise et efficace pour l'analyse de séquences IVUS de grandes tailles. Un outil de segmentation robuste pourrait devenir largement répandu pour la tâche ardue et fastidieuse qu'est l'analyse de ce type d'images.
Resumo:
L’objectif à moyen terme de ce travail est d’explorer quelques formulations des problèmes d’identification de forme et de reconnaissance de surface à partir de mesures ponctuelles. Ces problèmes ont plusieurs applications importantes dans les domaines de l’imagerie médicale, de la biométrie, de la sécurité des accès automatiques et dans l’identification de structures cohérentes lagrangiennes en mécanique des fluides. Par exemple, le problème d’identification des différentes caractéristiques de la main droite ou du visage d’une population à l’autre ou le suivi d’une chirurgie à partir des données générées par un numériseur. L’objectif de ce mémoire est de préparer le terrain en passant en revue les différents outils mathématiques disponibles pour appréhender la géométrie comme variable d’optimisation ou d’identification. Pour l’identification des surfaces, on explore l’utilisation de fonctions distance ou distance orientée, et d’ensembles de niveau comme chez S. Osher et R. Fedkiw ; pour la comparaison de surfaces, on présente les constructions des métriques de Courant par A. M. Micheletti en 1972 et le point de vue de R. Azencott et A. Trouvé en 1995 qui consistent à générer des déformations d’une surface de référence via une famille de difféomorphismes. L’accent est mis sur les fondations mathématiques sous-jacentes que l’on a essayé de clarifier lorsque nécessaire, et, le cas échéant, sur l’exploration d’autres avenues.
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in LaTex
Resumo:
A multivariate fit to the variation in global mean surface air temperature anomaly over the past half century is presented. The fit procedure allows for the effect of response time on the waveform, amplitude and lag of each radiative forcing input, and each is allowed to have its own time constant. It is shown that the contribution of solar variability to the temperature trend since 1987 is small and downward; the best estimate is -1.3% and the 2sigma confidence level sets the uncertainty range of -0.7 to -1.9%. The result is the same if one quantifies the solar variation using galactic cosmic ray fluxes (for which the analysis can be extended back to 1953) or the most accurate total solar irradiance data composite. The rise in the global mean air surface temperatures is predominantly associated with a linear increase that represents the combined effects of changes in anthropogenic well-mixed greenhouse gases and aerosols, although, in recent decades, there is also a considerable contribution by a relative lack of major volcanic eruptions. The best estimate is that the anthropogenic factors contribute 75% of the rise since 1987, with an uncertainty range (set by the 2sigma confidence level using an AR(1) noise model) of 49–160%; thus, the uncertainty is large, but we can state that at least half of the temperature trend comes from the linear term and that this term could explain the entire rise. The results are consistent with the intergovernmental panel on climate change (IPCC) estimates of the changes in radiative forcing (given for 1961–1995) and are here combined with those estimates to find the response times, equilibrium climate sensitivities and pertinent heat capacities (i.e. the depth into the oceans to which a given radiative forcing variation penetrates) of the quasi-periodic (decadal-scale) input forcing variations. As shown by previous studies, the decadal-scale variations do not penetrate as deeply into the oceans as the longer term drifts and have shorter response times. Hence, conclusions about the response to century-scale forcing changes (and hence the associated equilibrium climate sensitivity and the temperature rise commitment) cannot be made from studies of the response to shorter period forcing changes.
Resumo:
We consider real analytic involutive structures V, of co-rank one, defined on a real analytic paracompact orientable manifold M. To each such structure we associate certain connected subsets of M which we call the level sets of V. We prove that analytic regularity propagates along them. With a further assumption on the level sets of V we characterize the global analytic hypoellipticity of a differential operator naturally associated to V. As an application we study a case of tube structures.
Resumo:
In the literature there are several proposals of fuzzi cation of lattices and ideals concepts. Chon in (Korean J. Math 17 (2009), No. 4, 361-374), using the notion of fuzzy order relation de ned by Zadeh, introduced a new notion of fuzzy lattice and studied the level sets of fuzzy lattices, but did not de ne a notion of fuzzy ideals for this type of fuzzy lattice. In this thesis, using the fuzzy lattices de ned by Chon, we de ne fuzzy homomorphism between fuzzy lattices, the operations of product, collapsed sum, lifting, opposite, interval and intuitionistic on bounded fuzzy lattices. They are conceived as extensions of their analogous operations on the classical theory by using this de nition of fuzzy lattices and introduce new results from these operators. In addition, we de ne ideals and lters of fuzzy lattices and concepts in the same way as in their characterization in terms of level and support sets. One of the results found here is the connection among ideals, supports and level sets. The reader will also nd the de nition of some kinds of ideals and lters as well as some results with respect to the intersection among their families. Moreover, we introduce a new notion of fuzzy ideals and fuzzy lters for fuzzy lattices de ned by Chon. We de ne types of fuzzy ideals and fuzzy lters that generalize usual types of ideals and lters of lattices, such as principal ideals, proper ideals, prime ideals and maximal ideals. The main idea is verifying that analogous properties in the classical theory on lattices are maintained in this new theory of fuzzy ideals. We also de ne, a fuzzy homomorphism h from fuzzy lattices L and M and prove some results involving fuzzy homomorphism and fuzzy ideals as if h is a fuzzy monomorphism and the fuzzy image of a fuzzy set ~h(I) is a fuzzy ideal, then I is a fuzzy ideal. Similarly, we prove for proper, prime and maximal fuzzy ideals. Finally, we prove that h is a fuzzy homomorphism from fuzzy lattices L into M if the inverse image of all principal fuzzy ideals of M is a fuzzy ideal of L. Lastly, we introduce the notion of -ideals and - lters of fuzzy lattices and characterize it by using its support and its level set. Moreover, we prove some similar properties in the classical theory of - ideals and - lters, such as, the class of -ideals and - lters are closed under intersection. We also de ne fuzzy -ideals of fuzzy lattices, some properties analogous to the classical theory are also proved and characterize a fuzzy -ideal on operation of product between bounded fuzzy lattices L and M and prove some results.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A reformulation of the bounded mixed complementarity problem is introduced. It is proved that the level sets of the objective function are bounded and, under reasonable assumptions, stationary points coincide with solutions of the original variational inequality problem. Therefore, standard minimization algorithms applied to the new reformulation must succeed. This result is applied to the compactification of unbounded mixed complementarity problems. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.
Resumo:
A singular Riemannian foliation F on a complete Riemannian manifold M is called a polar foliation if, for each regular point p, there is an immersed submanifold Sigma, called section, that passes through p and that meets all the leaves and always perpendicularly. A typical example of a polar foliation is the partition of M into the orbits of a polar action, i.e., an isometric action with sections. In this article we prove that the leaves of H : M -> Sigma, coincide with the level sets of a smooth map H: M -> Sigma, if M is simply connected. In particular, the orbits of a polar action on a simply connected space are level sets of an isoparametric map. This result extends previous results due to the author and Gorodski, Heintze, Liu and Olmos, Carter and West, and Terng.
Resumo:
A complete characterization of the stability boundary of a class of nonlinear dynamical systems that admit energy functions is developed in this paper. This characterization generalizes the existing results by allowing the type-zero saddle-node nonhyperbolic equilibrium points on the stability boundary. Conceptual algorithms to obtain optimal estimates of the stability region (basin of attraction) in the form of level sets of a given family of energy functions are derived. The behavior of the stability region and the corresponding estimates are investigated for parameter variation in the neighborhood of a type-zero saddle-node bifurcation value.
Resumo:
Actually, transition from positive to negative plasma current and quasi-steady-state alternated current (AC) operation have been achieved experimentally without loss of ionization. The large transition times suggest the use of MHD equilibrium to model the intermediate magnetic field configurations for corresponding current density reversals. In the present work we show, by means of Maxwell equations, that the most robust equilibrium for any axisymmetric configuration with reversed current density requires the existence of several nonested families of magnetic surfaces inside the plasma. We also show that the currents inside the nonested families satisfy additive rules restricting the geometry and sizes of the axisymmetric magnetic islands; this is done without restricting the equilibrium through arbitrary functions. Finally, we introduce a local successive approximations method to describe the equilibrium about an arbitrary reversed current density minimum and, consequently, the transition between different nonested topologies is understood in terms of the eccentricity of the toroidal current density level sets.