969 resultados para Leaf rust


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Proteção de Plantas) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Proteção de Plantas) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leaf rust caused by Puccinia triticina is a serious disease of durum wheat (Triticum durum) worldwide. However, genetic and molecular mapping studies aimed at characterizing leaf rust resistance genes in durum wheat have been only recently undertaken. The Italian durum wheat cv. Creso shows a high level of resistance to P. triticina that has been considered durable and that appears to be due to a combination of a single dominant gene and one or more additional factors conferring partial resistance. In this study, the genetic basis of leaf rust resistance carried by Creso was investigated using 176 recombinant inbred lines (RILs) from the cross between the cv. Colosseo (C, leaf rust resistance donor) and Lloyd (L, susceptible parent). Colosseo is a cv. directly related to Creso with the leaf rust resistance phenotype inherited from Creso, and was considered as resistance donor because of its better adaptation to local (Emilia Romagna, Italy) cultivation environment. RILs have been artificially inoculated with a mixture of 16 Italian P. triticina isolates that were characterized for virulence to seedlings of 22 common wheat cv. Thatcher isolines each carrying a different leaf rust resistance gene, and for molecular genotypes at 15 simple sequence repeat (SSR) loci, in order to determine their specialization with regard to the host species. The characterization of the leaf rust isolates was conducted at the Cereal Disease Laboratory of the University of Minnesota (St. Paul, USA) (Chapter 2). A genetic linkage map was constructed using segregation data from the population of 176 RILs from the cross CL. A total of 662 loci, including 162 simple sequence repeats (SSRs) and 500 Diversity Arrays Technology markers (DArTs), were analyzed by means of the package EasyMap 0.1. The integrated SSR-DArT linkage map consisted of 554 loci (162 SSR and 392 DArT markers) grouped into 19 linkage blocks with an average marker density of 5.7 cM/marker. The final map spanned a total of 2022 cM, which correspond to a tetraploid genome (AABB) coverage of ca. 77% (Chapter 3). The RIL population was phenotyped for their resistance to leaf rust under artificial inoculation in 2006; the percentage of infected leaf area (LRS, leaf rust susceptibility) was evaluated at three stages through the disease developmental cycle and the area under disease progress curve (AUDPC) was then calculated. The response at the seedling stage (infection type, IT) was also investigated. QTL analysis was carried out by means of the Composite Interval Mapping method based on a selection of markers from the CL map. A major QTL (QLr.ubo-7B.2) for leaf rust resistance controlling both the seedling and the adult plant response, was mapped on the distal region of chromosome arm 7BL (deletion bin 7BL10-0.78-1.00), in a gene-dense region known to carry several genes/QTLs for resistance to rusts and other major cereal fungal diseases in wheat and barley. QLr.ubo-7B.2 was identified within a supporting interval of ca. 5 cM tightly associated with three SSR markers (Xbarc340.2, Xgwm146 e Xgwm344.2), and showed an R2 and an LOD peak value for the AUDPC equal to 72.9% an 44.5, respectively. Three additional minor QTLs were also detected (QLr.ubo-7B.1 on chr. 7BS; QLr.ubo-2A on chr. 2AL and QLr.ubo-3A on chr. 3AS) (Chapter 4). The presence of the major QTL (QLr.ubo-7B.2) was validated by a linkage disequilibrium (LD)-based test using field data from two different plant materials: i) a set of 62 advanced lines from multiple crosses involving Creso and his directly related resistance derivates Colosseo and Plinio, and ii) a panel of 164 elite durum wheat accessions representative of the major durum breeding program of the Mediterranean basin. Lines and accessions were phenotyped for leaf rust resistance under artificial inoculation in two different field trials carried out at Argelato (BO, Italy) in 2006 and 2007; the durum elite accessions were also evaluated in two additional field experiments in Obregon (Messico; 2007 and 2008) and in a green-house experiment (seedling resistance) at the Cereal Disease Laboratory (St. Paul, USA, 2008). The molecular characterization involved 14 SSR markers mapping on the 7BL chromosome region found to harbour the major QTL. Association analysis was then performed with a mixed-linear-model approach. Results confirmed the presence of a major QTL for leaf rust resistance, both at adult plant and at seedling stage, located between markers Xbarc340.2, Xgwm146 and Xgwm344.2, in an interval that coincides with the supporting interval (LOD-2) of QLr.ubo-7B.2 as resulted from the RIL QTL analysis. (Chapter 5). The identification and mapping of the major QTL associated to the durable leaf rust resistance carried by Creso, together with the identification of the associated SSR markers, will enhance the selection efficiency in durum wheat breeding programs (MAS, Marker Assisted Selection) and will accelerate the release of cvs. with durable resistance through marker-assisted pyramiding of the tagged resistance genes/QTLs most effective against wheat fungal pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For many agronomically important plant genes, only their position on a genetic map is known. In the absence of an efficient transposon tagging system, such genes have to be isolated by map-based cloning. In bread wheat Triticum aestivum, the genome is hexaploid, has a size of 1.6 × 1010 bp, and contains more than 80% of repetitive sequences. So far, this genome complexity has not allowed chromosome walking and positional cloning. Here, we demonstrate that chromosome walking using bacterial artificial chromosome (BAC) clones is possible in the diploid wheat Triticum monococcum (Am genome). BAC end sequences were mostly repetitive and could not be used for the first walking step. New probes corresponding to rare low-copy sequences were efficiently identified by low-pass DNA sequencing of the BACs. Two walking steps resulted in a physical contig of 450 kb on chromosome 1AmS. Genetic mapping of the probes derived from the BAC contig demonstrated perfect colinearity between the physical map of T. monococcum and the genetic map of bread wheat on chromosome 1AS. The contig genetically spans the Lr10 leaf rust disease resistance locus in bread wheat, with 0.13 centimorgans corresponding to 300 kb between the closest flanking markers. Comparison of the genetic to physical distances has shown large variations within 350 kb of the contig. The physical contig can now be used for the isolation of the orthologous regions in bread wheat. Thus, subgenome chromosome walking in wheat can produce large physical contigs and saturate genomic regions to support positional cloning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The common bean is affected by several pathogens that can cause severe yield losses. Here we report the introgression of resistance genes to anthracnose, angular leaf spot and rust in the `carioca-type` bean cultivar `Ruda`. Initially, four backcross (BC) lines were obtained using `TO`, `AB 136`, `Ouro Negro` and `AND 277` as donor parents. Molecular fingerprinting was used to select the lines genetically closer to the recurrent parent. The relative genetic distances between `Ruda` and the BC lines varied between 0.0% and 1.99%. The BC lines were intercrossed and molecular markers linked to the resistance genes were used to identify the plants containing the genes of interest. These plants were selfed to obtain the F(2), F(3) and F(4) plants which were selected based on the presence of the molecular markers mentioned and resistance was confirmed in the F(4) generation by inoculation. Four F(4:7) pyramid lines with all the resistance genes showed resistance spectra equivalent to those of their respective donor parents. Yield tests showed that these lines are as productive as the best `carioca-type` cultivars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influence of light and leaf epicuticular wax layer on Phakopsora pachyrhizi infection in soybean Asian rust, caused by the fungus Phakopsora pachyrhizi, is one of the most serious phytosanitary problems of soybean in Brazil, especially because no cultivars with satisfactory resistance levels as yet exist. The objective of this study was to evaluate the influence of luminosity and of leaf epicuticular wax on the infection of soybean by P. pachyrhizi. The adaxial and abaxial leaflet surfaces of the first trifoliate leaf from cultivar BRS 154, phenological stage V2, were inoculated with a suspension of 105 uredospores/mL. The plants were kept for 24 hours in a humid chamber at temperature of 23 degrees C, in light or dark conditions, using a factorial design. Subsequently, the plants were maintained for 14 days under a 12-hour photoperiod. The disease severity and density were evaluated. For in vitro experiments, in light or dark conditions, the evaluation was done in terms of uredospore germination and appressorium formation. The wax content of adaxial and abaxial leaflets was analyzed quantitatively using chloroform extraction and ultrastructurally using scanning electron microscope. Higher density and severity were observed when the adaxial surface was inoculated, with later incubation of the plants in the dark, with no significant interaction between these factors. Spore germination in the dark (40.7%) was statistically different from spore germination in the light (28.5%). The same effect was observed with appressorium formation, in the dark (24.7%) and in the light (12.8%). The quantity and the ultrastructural aspects of epicuticular wax content did not show differences between the adaxial and abaxial surfaces; nor did they show any effect on infection by Phakopsora pachyrhizi in the soybean cultivar studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Letter evaluates several narrow-band indices from EO-1 Hyperion imagery in discriminating sugarcane areas affected by 'orange rust' ( Puccinia kuehnii ) disease. Forty spectral vegetation indices (SVIs), focusing on bands related to leaf pigments, leaf internal structure, and leaf water content, were generated from an image acquired over Mackay, Queensland, Australia. Discriminant function analysis was used to select an optimum set of indices based on their correlations with the discriminant function. The predictive ability of each index was also assessed based on the accuracy of classification. Results demonstrated that Hyperion imagery can be used to detect orange rust disease in sugarcane crops. While some indices that only used visible near-infrared (VNIR) bands (e.g. SIPI and R800/R680) offer separability, the combination of VNIR bands with the moisture-sensitive band (1660 nm) yielded increased separability of rust-affected areas. The newly formulated 'Disease-Water Stress Indices' (DWSI-1=R800/R1660; DSWI-2=R1660/R550; DWSI-5=(R800+R550)/(R1660+R680)) produced the largest correlations, indicating their superior ability to discriminate sugarcane areas affected by orange rust disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to identify the best selection strategies for the more promising parental combinations to obtain lines with good resistance to soybean Asian rust (Phakopsora pachyrhizi). Two experiments were carried out in the field during the 2006/2007 and 2007/2008 growing seasons, to determine the percentage of infected leaf area of individual plants of five parents and their segregant F2 and F3 populations. The data obtained indicates that additive genetic variance predominates in the control of soybean resistance to Asian rust, and that the year and time of assessment do not significantly influence the estimates of the genetic parameters obtained. The narrow-sense heritability (h²r) ranged from 23.12 to 55.83%, and indicates the possibility of successful selection of resistant individuals in the early generations of the breeding program. All the procedures used to select the most promising populations to generate superior inbred lines for resistance to P. pachyrhizi presented similar results and identified the BR01-18437 x BRS 232 population as the best for inbred line selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A crude Sohxlet extract from leaves of Syzygium jambos was sequentially fractionated using a silica gel flash column. A bioassay based on the numbers of urediniospores of Puccinia psidii that germinated in 2% water agar detected an active stimulant of germination when the fraction eluted with 100% n-hexane was used. The active fraction induced up to 88% increase in germination when added to a spore suspension in mineral oil. The active fraction was characterized as a hydrocarbon by ¹H nuclear magnetic resonance, 13C nuclear magnetic resonance, and infrared analysis. Gas chromatography-mass spectrometry analysis indicated that the fraction was a long-chain 436 MW hydrocarbon with corresponding to C31H64, namely hentriacontane. This is the first time such a compound proved to be involved with stimulation of fungal spore germination. These results may contribute to better understanding the infection process of rusts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The progress of the severity of southern rust in maize (Zea mays) caused by Puccinia polysora was quantified in staggered plantings in different geographical areas in Brazil, from October to May, over two years (1995-1996 and 1996-1997). The logistic model, fitted to the data, better described the disease progress curves than the Gompertz model. Four components of the disease progress curves (maximum disease severity; area under the disease progress curve, AUDPC; area under the disease progress curve around the inflection point, AUDPCi; and epidemic rate) were used to compare the epidemics in different areas and at different times of planting. The AUDPC, AUDPCi, and the epidemic rate were analyzed in relation to the weather (temperature, relative humidity, hours of relative humidity >90%, and rainfall) and recorded during the trials. Disease severity reached levels greater than 30% in Piracicaba and Guaíra in the plantings between December and January. Lower values of AUDPC occurred in later plantings at both locations. The epidemic rate was positively correlated (P < 0.05) with the mean daily temperatures and negatively correlated with hours of relative humidity >90%. The AUDPC was not correlated with any weather variable. The AUDPCi was negatively related to both variables connected to humidity, but not to rain. Long periods (mostly >13 h day-1) of relative humidity >90% (that corresponded to leaf wetness) occurred in Castro. Severity of southern rust in maize has always been low in Castro, thus the negative correlations between disease and the two humidity variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane (Saccharum spp.) cultivation is one of the major agricultural activities in the Brazilian states. This study aimed to molecularly identify the pathogen associated with rust in sugarcane cultivars in the state of Rio de Janeiro and to suggest a control strategy. Among the 14 PCR-tested cultivars, Puccinia kuehnii infection was identified for RB947520, RB92606, RB835486, RB72454, SP89-11I5, SP83-2847, both from infected leaf sample and from urediniospores. Puccinia kuehnii was not detected by PCR for the cultivars RB955971, RB951541, RB92579, RB867515, RB855536, SP91-1049, SP80-3280, SP80-1816. This is the first molecular detection of this fungus in the state of Rio de Janeiro for six of the 14 analyzed cultivars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aiming at improving the efficiency control of Phakopsora pachyrhizi, this research evaluated different application techniques, using spray deposits and yield parameters of soybean crop. Two experiments were carried out in the experimental area of FCA/UNESP - Botucatu, SP, Brazil, in the soybean crop, Conquista variety, in the 2006/2007 season. The first experiment was arranged in random blocks with eight treatments and four replications. The treatments were conducted in factorial arrangement 4×2 (four air levels 0, 9, 11 and 29 km/h combined at two nozzle angles 0 and 30°) using AXI 110015 nozzles. Ten plants on each plot were selected for sampling spray deposits. Artificial targets were fixed on plants, two in the top and another two in the bottom part of plants (abaxial and adaxial leaf surface each one). For deposit evaluations, a cupric tracer was used and the amount of deposits was determined by a spectrophotometer. The second experiment was carried out in the same place and the treatments were of the same arrangement as the previous experiment, including control treatment (untreated plants). The spraying with triazole fungicide was realized in R2 and R5.2 growth stages of soybean with 142 l/ha spray volume. The nozzle angled of 30° combined with maximum air speed promoted the highest spray deposits on the soybean crop and influenced positively the control of the soybean Asian rust as well in the productivity of this crop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Brazil, Eucalyptus grandis is a key species for wood production. However, some genotypes are susceptible to rust (Puccinia psidii), mainly in São Paulo State, where climatic conditions are favorable for its development. Rust represents a high economic risk to forest companies because of the high potential of damage to commercial eucalypt plantations. The aims of the present study were (i) to select progenies of E. grandis for stability and adaptability regarding resistance to rust at different locations; (ii) compare the selections under these different climatic conditions; and (iii) compare rust severity in the field with the theoretical model. We observed that climatic conditions were extremely influential factors for rust development, but even under favorable conditions for disease development, we found rust-resistant progenies. In sites unfavorable for rust development, we detected highly susceptible progenies. We found significant correlation among the genetic material, environmental conditions and disease symptoms, however, we observed a simple genotype-environmental interaction and significant genetic variability among the progenies. The average heritability was high among the progenies in all sites, indicating substantial genetic control for rust resistance. We also observed a good relationship between rust severity in the field and the theoretical model that considered annual average temperature and leaf wetness. © 2013 Elsevier B.V.