995 resultados para Layered Shell Element


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the results of non-linear elasto-plastic implicit dynamic finite element analyses that are used to predict the collapse behaviour of cold-formed steel portal frames at elevated temperatures. The collapse behaviour of a simple rigid-jointed beam idealisation and a more accurate semi-rigid jointed shell element idealisation are compared for two different fire scenarios. For the case of the shell element idealisation, the semi-rigidity of the cold-formed steel joints is explicitly taken into account through modelling of the bolt-hole elongation stiffness. In addition, the shell element idealisation is able to capture buckling of the cold-formed steel sections in the vicinity of the joints. The shell element idealisation is validated at ambient temperature against the results of full-scale tests reported in the literature. The behaviour at elevated temperatures is then considered for both the semi-rigid jointed shell and rigid-jointed beam idealisations. The inclusion of accurate joint rigidity and geometric non-linearity (second order analysis) are shown to affect the collapse behaviour at elevated temperatures. For each fire scenario considered, the importance of base fixity in preventing an undesirable outwards collapse mechanism is demonstrated. The results demonstrate that joint rigidity and varying fire scenarios should be considered in order to allow for conservative design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work deals with the development of robust numerical tools for Isogeometric Analysis suitable for problems of solid mechanics in the nonlinear regime. To that end, a new solid-shell element, based on the Assumed Natural Strain method, is proposed for the analysis of thin shell-like structures. The formulation is extensively validated using a set of well-known benchmark problems available in the literature, in both linear and nonlinear (geometric and material) regimes. It is also proposed an alternative formulation which is focused on the alleviation of the volumetric locking pathology in linear elastic problems. In addition, an introductory study in the field of contact mechanics, in the context of Isogeometric Analysis, is also presented, with special focus on the implementation of a the Point-to-Segment algorithm. All the methodologies presented in the current work were implemented in a in-house code, together with several pre- and post-processing tools. In addition, user subroutines for the commercial software Abaqus were also implemented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper is presented an higher-order model for static and free vibration analyses of magneto-electro-elastic plates, wich allows the analysis of thin and thick plates, which allows the analysis of thin and thick plates. The finite element model is a single layer triangular plate/shell element with 24 degrees of fredom for the generalized mechanical displacements. Two degrees on freedom are introduced per each element layer, one corresponding to the electrical potential and the other for magnetic potential. Solutions are obtained for different laminations of the magneto-electro-elastic plate, as well as for the purely elastic plate as a special case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with a third order shear deformation finite element model wich is applied on the active resonance control thin plate/shell laminated structures with integrated piezoelectric layers of patches, acting as sensors and actuators. The finite element model is a single layer tringular nonconforming plate/shell element with 24 degrees of freedom for he generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich are surface bonded on the laminated. The newwork method is considered to calculate the dynamic response of the laminated sructures forced to vibrate in the first natural frequency. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. The model is applied to the solution of one illustrative case, and the results are presented and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a finite element formulation based on the classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators.The finite element model is a single layer trinaguular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element elemenet layer or patch. An optimization of the patches position is perfomed to maximize the piezoelectric actuators efficiency as well as,the electric potential distribution is serach to reach the specified strusctura transverse displacement distribution is search to reach the specified structures trsnsverse displacement distribution (shape control). A gradient based algorithm is used for this purpose.Results are presented and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with a finite element formulation based on the classical laminated plate theory, for active control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previous optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position is performed to maximize the piezoelectric actuator efficiency. The genetic algorithm is used for these purposes. The finite element model is a single layer triangular plate/shell element with 24 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, which can be surface bonded or embedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the geometrically non linear analysis of thin plate/shell laminated structures with embedded integrated piezoelectric actuors or sensors layers and/or patches.The model is based on the Kirchhoff classical laminated theory and can be applied to plate and shell adaptive structures with arbitrary shape, general mechanical and electrical loadings. the finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of fredom for the generalized displacements and one eçlectrical potential degree of freedom for each piezoelectric layer or patch. An updated Lagrangian formulation associated to Newton-Raphson technique is used to solve incrementally and iteratively the equilibrium equation.The model is applied in the solution of four illustrative cases, and the results are compared and discussedwith alternative solutions when available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite structures incorporating piezoelectric sensors and actuators are increasingly becoming important due to the offer of potential benefits in a wide range of engineering applications such as vibration and noise supression, shape control and precisition positioning. This paper presents a finit element formulation based on classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezsoelectric elementlayer or patch, witch are surface bonded on the laminate. An optimization of the patches position is performed to maximize the piezoelectric actuators efficiency as well as, the electric potential distribuition is search to reach the specified structure transverse displacement distribuition (shape control). A gradient based algorithm is used for this purpose. The model is applied in the optimization of illustrative laminated plate cases, and the results are presented and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with a finite formulation baserd on the classical laminated plate tehory, for active control of thin late laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previuos optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position in performed to maximize the piezoelectric actuator efficiency. the simulating annealing mthod is used for these purposes. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich can be surface bonded or imbedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorirhm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A sandwich construction is a special form of the laminated composite consisting of light weight core, sandwiched between two stiff thin face sheets. Due to high stiffness to weight ratio, sandwich construction is widely adopted in aerospace industries. As a process dependent bonded structure, the most severe defects associated with sandwich construction are debond (skin core bond failure) and dent (locally deformed skin associated with core crushing). Reasons for debond may be attributed to initial manufacturing flaws or in service loads and dent can be caused by tool drops or impacts by foreign objects. This paper presents an evaluation on the performance of honeycomb sandwich cantilever beam with the presence of debond or dent, using layered finite element models. Dent is idealized by accounting core crushing in the core thickness along with the eccentricity of the skin. Debond is idealized using multilaminate modeling at debond location with contact element between the laminates. Vibration and buckling behavior of metallic honeycomb sandwich beam with and without damage are carried out. Buckling load factor, natural frequency, mode shape and modal strain energy are evaluated using finite element package ANSYS 13.0. Study shows that debond affect the performance of the structure more severely than dent. Reduction in the fundamental frequencies due to the presence of dent or debond is not significant for the case considered. But the debond reduces the buckling load factor significantly. Dent of size 8-20% of core thickness shows 13% reduction in buckling load capacity of the sandwich column. But debond of the same size reduced the buckling load capacity by about 90%. This underscores the importance of detecting these damages in the initiation level itself to avoid catastrophic failures. Influence of the damages on fundamental frequencies, mode shape and modal strain energy are examined. Effectiveness of these parameters as a damage detection tool for sandwich structure is also assessed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some aspects of numerical simulation of Lamb wave propagation in composite laminates using the finite element models with explicit dynamic analysis are addressed in this study. To correctly and efficiently describe the guided-wave excited/received by piezoelectric actuators/sensors, effective models of surface-bounded flat PZT disks based on effective force, moment and displacement are developed. Different finite element models for Lamb wave excitation, collection and propagation in isotropic plate and quasi-isotropic laminated composite are evaluated using continuum elements (3-D solid element) and structural elements (3-D shell element), to elaborate the validity and versatility of the proposed actuator/sensor models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A family of simple, displacement-based and shear-flexible triangular and quadrilateral flat plate/shell elements for linear and geometrically nonlinear analysis of thin to moderately thick laminate composite plates are introduced and summarized in this paper.

The developed elements are based on the first-order shear deformation theory (FSDT) and von-Karman’s large deflection theory, and total Lagrangian approach is employed to formulate the element for geometrically nonlinear analysis. The deflection and rotation functions of the element boundary are obtained from Timoshenko’s laminated composite beam functions, thus convergence can be ensured theoretically for very thin laminates and shear-locking problem is avoided naturally.

The flat triangular plate/shell element is of 3-node, 18-degree-of-freedom, and the plane displacement interpolation functions of the Allman’s triangular membrane element with drilling degrees of freedom are taken as the in-plane displacements of the element. The flat quadrilateral plate/shell element is of 4-node, 24-degree-of-freedom, and the linear displacement interpolation functions of a quadrilateral plane element with drilling degrees of freedom are taken as the in-plane displacements.

The developed elements are simple in formulation, free from shear-locking, and include conventional engineering degrees of freedom. Numerical examples demonstrate that the elements are convergent, not sensitive to mesh distortion, accurate and efficient for linear and geometric nonlinear analysis of thin to moderately thick laminates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bending and reverse bending are the dominant material deformations in roll forming, and hence property data derived from bend tests could be more relevant than tensile test data for numerical simulation of a roll forming process. Recent investigations have shown that residual stresses change the material behavior close to the yield in a bending test. So, residual stresses introduced during prior steel processing operations may affect the roll forming process, and therefore they need to be included in roll forming simulations to achieve improved model accuracy. Measuring the residual stress profile experimentally is time consuming and has limited accuracy while analytical models that are available require detailed information about the pre-processing conditions that is generally not available for roll forming materials. The main goal of this study is to develop an inverse routine that determines a residual stress profile through the material thickness based on experimental pure bend test data. A numerical model of the skin passing (temper rolling) process is performed to introduce a residual stress profile in DP780 steel sheet. The skin passed strips are used in a pure bending simulation to record moment-curvature data and this data is then applied in an inverse analysis to predict the residual stress profile in the material. Comparison of the residual stress profile predicted by the inverse routine with that calculated by finite element analysis (FEA) indicates an inverse approach combined with pure bend test may present an alternative to predict residual stresses in sheet metals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To have fuel efficient vehicles with a lightweight structure, the use of High Strength Steels (HSS) and Advanced High Strength Steels (AHSS) in the body of automobiles is increasing. Roll forming is used widely to form AHSS materials. Roll forming is a continuous process in which a flat strip is shaped to the desired profile by passing through numerous sets of rolls. Formability and springback are two major concerns in the roll forming of AHSS materials. Previous studies have shown that the elastic modulus (Young's modulus) of AHSS materials can change when the material undergoes plastic deformation and the main goal of this study is to numerically investigate the effect of a change in elastic modulus during forming on springback in roll forming. Experimental loading-unloading tests have been performed to obtain the material properties of TRIP 700 steel and incorporate those in the material model used in the numerical simulation of the roll forming process. The finite element simulations were carried out using MSC-Marc and two different element types, a shell element and a solid-shell element, were investigated. The results show that the elastic modulus diminution due to plastic strain increases the springback angle by about 60% in the simple V-section roll forming analyzed in this study. © (2014) Trans Tech Publications, Switzerland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Roll forming is increasingly used in the automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for structural components. Because of the large variety of applications of roll forming in the industry, Finite Element Analysis (FEA) is increasingly utilized for roll forming process design. Bending is the dominant deformation mode in roll forming and sheet materials used in the process are often temper rolled (skin passed), roller- or tension-levelled. These processes introduce residual stresses into the material, and recent studies have shown that those affect the material behaviour in bending. A thickness reduction rolling process available at Deakin that leads to material deformation similar to an industrial temper rolling operation was used in this study to introduce residual stresses into a dual phase, DP780, steel strip. The initial and thickness reduced strips were then used in a 5-stand experimental V-section roll forming set-up to identify the effect of residual stress on the final shape. The influence of residual stress and the effect of plastic deformation on the material behaviour in roll forming are separately determined in numerical simulation. The results show that the thickness reduction rolling process decreases the maximum bow height while the springback angle and end flare increase. Comparison with experimental results shows that using material data from the conventional tensile test in a numerical simulation does not allow for the accurate prediction of shape defects in a roll forming process if a residual stress profile exists in the material. On the other hand including the residual stress information leads to improved model accuracy.