968 resultados para Lattice Solid Model
Resumo:
A lattice Boltzmann method is used to model gas-solid reactions where the composition of both the gas and solid phase changes with time, while the boundary between phases remains fixed. The flow of the bulk gas phase is treated using a multiple relaxation time MRT D3Q19 model; the dilute reactant is treated as a passive scalar using a single relaxation time BGK D3Q7 model with distinct inter- and intraparticle diffusivities. A first-order reaction is incorporated by modifying the method of Sullivan et al. [13] to include the conversion of a solid reactant. The detailed computational model is able to capture the multiscale physics encountered in reactor systems. Specifically, the model reproduced steady state analytical solutions for the reaction of a porous catalyst sphere (pore scale) and empirical solutions for mass transfer to the surface of a sphere at Re=10 (particle scale). Excellent quantitative agreement between the model and experiments for the transient reduction of a single, porous sphere of Fe 2O 3 to Fe 3O 4 in CO at 1023K and 10 5Pa is demonstrated. Model solutions for the reduction of a packed bed of Fe 2O 3 (reactor scale) at identical conditions approached those of experiments after 25 s, but required prohibitively long processor times. The presented lattice Boltzmann model resolved successfully mass transport at the pore, particle and reactor scales and highlights the relevance of LB methods for modelling convection, diffusion and reaction physics. © 2012 Elsevier Inc.
Resumo:
A lattice-gas model of multilayer adsorption has been solved in the mean-field approximation by a different numerical method. Earlier workers obtained a single solution for all values of temperature and pressure. In the present work, multiple solutions have been obtained in certain regions of temperature and pressure which give rise to bysteresis in the adsorption isotherm. In addition, we have obtained a parameter which behaves like an order parameter for the transition. The potential-energy function shows a double minimum in the region of bysteresis and a single maximum elsewhere.
Resumo:
The pulmonary crackling and the formation of liquid bridges are problems that for centuries have been attracting the attention of scientists. In order to study these phenomena, it was developed a canonical cubic lattice-gas like model to explain the rupture of liquid bridges in lung airways [A. Alencar et al., 2006, PRE]. Here, we further develop this model and add entropy analysis to study thermodynamic properties, such as free energy and force. The simulations were performed using the Monte Carlo method with Metropolis algorithm. The exchange between gas and liquid particles were performed randomly according to the Kawasaki dynamics and weighted by the Boltzmann factor. Each particle, which can be solid (s), liquid (l) or gas (g), has 26 neighbors: 6 + 12 + 8, with distances 1, √2 and √3, respectively. The energy of a lattice's site m is calculated by the following expression: Em = ∑k=126 Ji(m)j(k) in witch (i, j) = g, l or s. Specifically, it was studied the surface free energy of the liquid bridge, trapped between two planes, when its height is changed. For that, was considered two methods. First, just the internal energy was calculated. Then was considered the entropy. It was fond no difference in the surface free energy between this two methods. We calculate the liquid bridge force between the two planes using the numerical surface free energy. This force is strong for small height, and decreases as the distance between the two planes, height, is increased. The liquid-gas system was also characterized studying the variation of internal energy and heat capacity with the temperature. For that, was performed simulation with the same proportion of liquid and gas particle, but different lattice size. The scale of the liquid-gas system was also studied, for low temperature, using different values to the interaction Jij.
Resumo:
We obtain a diagonal solution of the dual reflection equation for the elliptic A(n-1)((1)) solid-on-solid model. The isomorphism between the solutions of the reflection equation and its dual is studied. (C) 2004 American Institute of Physics.
Resumo:
The temperature dependence of the critical micelle concentration (CMC) and a closed-loop coexistence curve are obtained, via Monte Carlo simulations, in the water surfactant limit of a two-dimensional version of a statistical mechanical model for micro-emulsions, The CMC and the coexistence curve reproduce various experimental trends as functions of the couplings. In the oil-surfactant limit, there is a conventional coexistence cure with an upper consolute point that allows for a region of three-phase coexistence between oil-rich, water-rich and microemulsion phases.
Resumo:
We present a variety of physical implications of a mean-field theory for spiral spin-density-wave states in the square-lattice Hubbard model for small deviations from half filling. The phase diagram with the paramagnetic metal, two spiral (semimetallic) states, and ferromagnet is calculated. The momentum distribution function and the (quasiparticle) density of states are discussed. There is a significant broadening of the quasiparticle bands when the antiferromagnetic insulator is doped. The evolution of the Fermi surface and the variation of the plasma frequency and a charge-stiffness constant with U/t and δ are calculated. The connection to results based on the Schwinger-boson-slave-fermion formalism is made.
Resumo:
This paper describes an algorithm for constructing the solid model (boundary representation) from pout data measured from the faces of the object. The poznt data is assumed to be clustered for each face. This algorithm does not require any compuiier model of the part to exist and does not require any topological infarmation about the part to be input by the user. The property that a convex solid can be constructed uniquely from geometric input alone is utilized in the current work. Any object can be represented a5 a combznatzon of convex solids. The proposed algorithm attempts to construct convex polyhedra from the given input. The polyhedra so obtained are then checked against the input data for containment and those polyhedra, that satisfy this check, are combined (using boolean union operation) to realise the solid model. Results of implementation are presented.
Reconstructing Solid Model from 2D Scanned Images of Biological Organs for Finite Element Simulation
Resumo:
This work presents a methodology to reconstruct 3D biological organs from image sequences or other scan data using readily available free softwares with the final goal of using the organs (3D solids) for finite element analysis. The methodology deals with issues such as segmentation, conversion to polygonal surface meshes, and finally conversion of these meshes to 3D solids. The user is able to control the detail or the level of complexity of the solid constructed. The methodology is illustrated using 3D reconstruction of a porcine liver as an example. Finally, the reconstructed liver is imported into the commercial software ANSYS, and together with a cyst inside the liver, a nonlinear analysis performed. The results confirm that the methodology can be used for obtaining 3D geometry of biological organs. The results also demonstrate that the geometry obtained by following this methodology can be used for the nonlinear finite element analysis of organs. The methodology (or the procedure) would be of use in surgery planning and surgery simulation since both of these extensively use finite elements for numerical simulations and it is better if these simulations are carried out on patient specific organ geometries. Instead of following the present methodology, it would cost a lot to buy a commercial software which can reconstruct 3D biological organs from scanned image sequences.
Resumo:
A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simple traffic light problem is simulated by using the present lattice Boltzmann model, and the result agrees well with analytical solution.
Resumo:
We formulate a lattice Boltzmann model which simulates Korteweg-de Vries equation by using a method of higher moments of lattice Boltzmann equation. Using a series of lattice Boltzmann equations in different time scales and the conservation law in time scale to, we obtain equilibrium distribution function. The numerical examples show that the method can be used to simulate soliton.
Resumo:
The three scaling parameters described in Sanchez-Lacombe lattice fluid theory (SLLFT), T*, P* and rho* of pure polystyrene (PS), pure poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and their mixtures are obtained by fitting corresponding experimental pressure volume-temperature data with equation-of-state of SLLFT. A modified combining rule in SLLFT used to match the volume per mer, v* of the PS/PPO mixtures was advanced and the enthalpy of mixing and Flory-Huggins (FH) interaction parameter were calculated using the new rule. It is found that the difference between the new rule and the old one presented by Sanchez and Lacombe is quite small in the calculation of the enthalpy of mixing and FH interaction parameter and the effect of volume-combining rule on the calculation of thermodynamic properties is much smaller than that of energy-combining rule. But the relative value of interaction parameter changes much due to the new volume-based combining rule. This effect can affect the position of phase diagram very much, which is reported elsewhere [Macromolecules 34 (2001) 6291]
Resumo:
With the aid of thermodynamics of Gibbs, the expression of the spinodal was derived for the polydisperse polymer-solvent system in the framework of Sanchez-Lacombe Lattice Fluid Theory (SLLFT). For convenience, we considered that a model polydisperse polymer contains three sub-components. According to our calculation, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights of the polydisperse polymer, but the z-average molecular weight ((M) over bar (z)) dependence on the spinodal is invisible. The dependence of free volume on composition, temperature, molecular weight, and its distribution results in the effect of (M) over bar (n) on the spinodal. Moreover, it has been found that the effect of changing (M) over bar (w) on the spinodal is much bigger than that of changing (M) over bar (n) and the extrema of the spinodal increases with the rise of the weight-average molecular weight of the polymer in the solutions with upper critical solution temperature (UCST). However, the effect of polydispersity on the spinodal can be neglected for the polymer with a considerably high weight-average molecular weight. A more simple expression of the spinodal for the polydisperse polymer solution in the framework of SLLFT was also derived under the assumption of upsilon(*)=upsilon(1)(*)=upsilon(2)(*) and (1/r(1)(0))-(1/r(2i)(0))-->(1/r(1)(0)).
Resumo:
The Gibbs free energies and equations of state of polymers with special molar mass distributions, e.g., Flory distribution, uniform distribution and Schulz distribution, are derived based on a lattice fluid model. The influence of the polydispersity (or t
Resumo:
In this paper, the Gibbs free energy, the equation of state and the chemical potentials of polydisperse multicomponent polymer mixtures are derived. For general binary mixtures of polydisperse polymers, we also give the Gibbs free energy, the equation of