960 resultados para Laser-induced modification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, we report spectroscopic studies of laser-induced plasmas produced by focusing the second harmonic (532nm) of a Nd:YAG laser onto the laminar flow of a liquid containing chromium. The plasma temperature is determined from the coupled Saha-Boltzmann plot and the electron density is evaluated from the Stark broadening of an ionic line of chromium Cr(II)] at 267.7nm. Our results reveal a decrease in plasma temperature with an increase in Cr concentration up to a certain concentration level; after that, it becomes approximately constant, while the electron density increases with an increase in analyte (Cr) concentration in liquid matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chalcogenide glasses are interesting materials for their infrared transmitting properties and photo-induced effects. This paper reports the influence of light on the optical properties of Sb10S40Se50 thin films. The amorphous nature and chemical composition of the deposited film was studied by X-ray diffraction and energy dispersive X-ray analysis (EDAX). The optical constants, i.e., refractive index, extinction coefficient, and optical band gap as well as film thickness are determined from the measured transmission spectra using the Swanepoel method. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. The dispersion energy parameter was found to be less for the laser-irradiated film, which indicates the laser-irradiated film is more microstructurally disordered as compared to the as-prepared film. It is observed that laser-irradiation of the films leads to decrease in optical band gap (photo-darkening) while increase in refractive index. The decrease in the optical band gap is explained on the basis of change in nature of films due to chemical disorderness and the increase in refractive index may be due to the densification of films with improved grain structure because of microstructural disorderness in the films. The optical changes are supported by X-ray photoelectron spectroscopy data. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present article describes a working or combined calibration curve in laser-induced breakdown spectroscopic analysis, which is the cumulative result of the calibration curves obtained from neutral and singly ionized atomic emission spectral lines. This working calibration curve reduces the effect of change in matrix between different zone soils and certified soil samples because it includes both the species' (neutral and singly ionized) concentration of the element of interest. The limit of detection using a working calibration curve is found better as compared to its constituent calibration curves (i.e., individual calibration curves). The quantitative results obtained using the working calibration curve is in better agreement with the result of inductively coupled plasma-atomic emission spectroscopy as compared to the result obtained using its constituent calibration curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current work reports quantitative OH species concentration in the cavity of a trapped vortex combustor (TVC) in the context of mixing and flame stabilization studies using both syngas and methane fuels. Planar laser induced fluorescence (PLIF) measurements of OH radical obtained using a Nd: YAG pumped dye laser are quantified using a flat flame McKenna burner. The momentum flux ratio (MFR), defined as the ratio of the cavity fuel jet momentum to that of the guide vane air stream, is observed to be a key governing parameter. At high MFRs similar to 4.5, the flame front is observed to form at the interface of the fuel jet and the air jet stream. This is substantiated by velocity vector field measurements. For syngas, as the MFR is lowered to similar to 0.3, the fuel-air mixing increases and a flame front is formed at the bottom and downstream edge of the cavity where a stratified charge is present. This trend is observed for different velocities at similar equivalence ratios. In case of methane combustion in the cavity, where the MFRs employed are extremely low at similar to 0.01, a different mechanism is observed. A fuel-rich mixture is now observed at the center of the cavity and this mixture undergoes combustion. On further increase of the cavity equivalence ratio, the rich mixture exceeds the flammability limit and forms a thin reaction zone at the interface with air stream. As a consequence, a shear layer flame at the top of the cavity interface with the mainstream is also observed. The equivalence ratio in the cavity also determines the combustion characteristics in the case of fuel-air mixtures that are formed as a result of the mixing. Overall, flame stabilization mechanisms have been proposed, which account for the wide range of MFRs and premixing in the mainstream as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To accomplish laser-induced thermal loading simulation tests for pistons,the Gaussian beam was modulated into multi-circular beam with specific intensity distribution.A reverse method was proposed to design the intensity distribution for the laser-induced thermal loading based on finite element(FE) analysis.Firstly,the FE model is improved by alternating parameters of boundary conditions and thermal-physical properties of piston material in a reasonable range,therefore it can simulate the experimental resul...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that the press formability and the elongation of laser textured sheet are improved, and the service life of textured roll is longer than that of the un-textured roll due to hardening of the treated surface. One of the goals to develop high repetitive rate YAG laser-induced discharge texturing (LIDT) is to get deeper hardening zone. By observing and measuring cross-section of LIDT spots in different discharge conditions, it is found that the single-crater, which is formed by the discharge conditions of anode, which is covered by an oil film and with rectangular current waveform, has the most depth of heat affected zone (HAZ) comparing with other crater shapes when discharge energy is the same. The depth of HAZ is mainly depends on pulse duration when the discharge spot is single-crater. The results are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new failure mode is observed in circular brass foils induced by laser beam. The new failure is based on the following experimental facts : (1) the peripheries of the circular brass foils are fixed and the surfaces of the foils are radiated by laser beam ; (2) the laser beam used is considered to be non-Gaussian spatially, actually an approximately uniform distribution limited in a certain size spot ; (3) the pulse on time of laser beam should be 250 μs, i.e. so called long duration pulse laser. The failure process consists of three stages ; i.e. thermal bulging, localized shear deformation and perforation by plugging. The word reverse in reverse bulging and plugging mode means that bulging and plugging occur in the direction of incident laser beam. To study the newly-discovered type of failure quantitatively, analytical solutions for the axisymmetric temperature field and deflection curve are derived. The calculated results show that the newly discovered failure mode is attributed to the spatial structure effect of laser beam indeed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct comparison between time resolved PLIF measurements of OH and two dimensional slices from a full three dimensional DNS data set of turbulent premixed flame kernels in lean methane/air mixture was presented. The local flame structure and the degree of flame wrinkling were examined in response to differing turbulence intensities and turbulent Reynolds numbers. Simulations were performed using the SEGA DNS code, which is based on the solution of the compressible Navier Stokes, species, and energy equations for a lean hydrocarbon mixture. For the OH PLIF measurements, a cluster of four Nd:YAG laser was fired sequentially at high repetition rates and used to pump a dye laser. The frequency doubled laser beam was formed into a sheet of 40 mm height using a cylindrical telescope. The combination of PLIF and DNS has been demonstrated as a powerful tool for flame analysis. This research will form the basis for the development of sub-grid-scale (SGS) models for LES of lean-premixed combustion systems such as gas turbines. This is an abstract of a paper presented at the 30th International Symposium on Combustion (Chicago, IL 7/25-30/2004).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new kind of failure mode is observed in circular brass foils in which their peripheries are fixed and their surfaces are subjected to a long pulsed laser over a central region. The failure is classified into three stages; they are referred to as thermal bulging, localized shear deformation and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. To study the failure mode, we investigate the non-linear response of heated, non-homogeneous circular plates. Based on the large deflection equations of Berger [J. Appl. Mech. 22 (3), 465-472 (1965)], Ohnabe and Mizuguchi [Int. J. Non-Linear Mech. 28 (4), 365-372 (1993)] and the parabolic shear deformation theory of Bhimaraddi and Stevens [J. Appl. Mech. 51 (1), 195-198 (1984)], we have derived new coupled governing equations of shear deformation and deflection. The new equations are solved, for the plate with a clamped edge, by the Galerkin and iterative methods. The numerical results for the shear deformation distribution are in good agreement with the experimental observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined detection system involving simultaneous LIF and contactless-conductometric measurements at the same place of the microfluidic chip was described. The LIF measurement was designed according to the confocal principle and a moveable contactless-conductivity detector was used in (CD)-D-4. Both measurements were mutually independent and advantageous in analyses of mixtures. Various experimental parameters affecting the response were examined and optimized. The performances were demonstrated by simultaneous detection of Rhodamine B. And the results showed that the combined detection system could be used sensitively and reliably. (C) 2008 Yong Yu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-induced well-ordered and controllable wavy patterns are constructed in the deposited metal thin film. The micrometer-sized structure and orientation of the wavy patterns can be controlled via scanning a different size of rectangle laser spot on the films. Ordered patterns such as aligned, crossed, and whirled wave structures were designed over large areas. This patterning technique may find applications in both exploring the reliability and mechanical properties of thin films, and fabricating microfluidic devices. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new kind of failure mode is observed in circular brass foils whose peripheries are fixed and whose surfaces are subjected to a long pulsed laser over a central region. The failure is classified into three stages; they are referred to as thermal bulging, localized shear deformation and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. The failure mode is different from the well-known types of laser induced material damage, such as spallation, melting and/or vaporization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new kind of failure induced by long pulsed laser, named as reverse plugging effect (RPE), was experimentally observed in thin foil of brass. The whole failure process can be divided into three stages, namely thermal reverse bulging, shear deformation localization and reverse perforation. In this paper, a description of experimental and theoretical study on this newly discovered phenomenon is presented in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method for measuring the density, temperature and velocity of N2 gas flow by laser induced biacetyl phosphorescence is proposed. The characteristics of the laser induced phosphorescence of biacetyl mixed with N2 are investigated both in static gas and in one-dimensional flow along a pipe with constant cross section. The theoretical and experimental investigations show that the temperature and density of N2 gas flow could be measured by observing the phosphorescence lifetime and initial intensity of biacetyl triplet (3Au) respectively. The velocity could be measured by observing the time-of-flight of the phosphorescent gas after pulsed laser excitation. The prospect of this method is also discussed.