822 resultados para Laser Optics
Optical source model for the 23.2-23.6 nm radiation from the multielement germanium soft X-ray laser
Resumo:
Distributions of source intensity in two dimensions (designated the source model), averaged over a single laser pulse, based on experimental measurements of spatial coherence, are considered for radiation from the unresolved 23.2/23.6 nm spectral lines from the germanium collisional X-ray laser. The model derives from measurements of the visibility of Young slit interference fringes determined by a method based on the Wiener-Khinchin theorem. Output from amplifiers comprising three and four target elements have similar coherence properties in directions within the horizontal plane corresponding to strong plasma refraction effects and fitting the coherence data shows source dimensions (FWHM) are similar to 26 mu m (horizontal), significantly smaller than expected by direct imaging, and similar to 125 mu m (vertical: equivalent to the height of the driver excitation). (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Evidence of high gain pumped by recombination has been observed in the 5g-4f transition at 11.1 nn in sodiumlike copper ions with use of a 20-J 2-ps Nd:glass laser system. The time- and space-integrated gain coefficient was 8.8 +/- 1.4 cm(-1), indicating a single-transit amplification of similar to 60 times. This experiment has shown that 2 ps is the optimum pulse duration to drive the sodiumlike copper recombination x-ray lasing at 11.1 nm. (C) 1996 Optical Society of America
Resumo:
We report a study of the effect of prepulses on XUV lasing of Ne-like germanium for an irradiation geometry where approximate to 20 mm long germanium slab targets were irradiated at approximate to 1.6 x 10(13) W cm(-2) using approximate to 0.7 ns (1.06 mu m) pulses from the VULCAN glass laser. Prepulses were generated at fractional power levels of approximate to 2 x 10(-4) (low) and approximate to 2 x 10(-2) (high) and arrived on target 5 and 3.2 ns respectively in advance of the main heating pulse, For both the low and high prepulses the output of the 3p-3s, J = 0-1, line at 19.6 nm was enhanced such that the peak radiant density (J/st) for this line became greater than that for the normally stronger J = 2-1 lines at 23.2 and 23.6 nm. The J = 0-1 line, whose FWHM duration was reduced from approximate to 450 ps to approximate to 100 ps, delivered approximate to 6 x more power (W) than the average for the combined J = 2-1 lines, whose FWHM duration was approximate to 500 ps for both levels of prepulse, The higher prepulse was more effective, yielding approximate to 2 x more radiant density and approximate to 7 x more power on both the J = 0-1 and J = 2-1 transitions compared to the low prepulse case, The most dramatic observation overall was the approximate to 40 x increase of power in the J = 0-1 line for the high prepulse (approximate to 2%) case compared with the zero prepulse case. These observations, coupled with measurements of beam divergence and beam deviation through refractive bending, as well as general agreement with modelling, lead us to conclude that, for germanium, the main influence of the prepulse is (a) to increase the energy absorbed from the main pulse, (b) to increase the volume of the gain zone and (c) to relax the plasma density gradients, particularly in the J = 0-1 gain zone.
Resumo:
An imaging microscope, comprising a Schwarzchild condenser and a zone-plate optical arrangement, has been established on the Vulcan Nd:glass laser system at the Rutherford Appleton Laboratory. Magnified images of simple test structures have been taken in x-ray transmission in a single subnanosecond laser shot by using doublet x-ray laser radiation at 23.2 and 23.6 nm from collisionally pumped Ne-like germanium. Image resolutions of approximately 0.15 mum have been measured. The results are a proof of principle and demonstrate that images of potentially suboptical resolution and of specimen regions that are destroyed on passage of the x-ray beam can be taken successfully using the Vulcan x-ray laser.
Resumo:
We present a new method of laser frequency locking in which the feedback signal is directly proportional to the detuning from an atomic transition, even at detunings many times the natural linewidth of the transition. Our method is a form of sub-Doppler polarization spectroscopy, based on measuring two Stokes parameters (I-2 and I-3) of light transmitted through a vapor cell. It extends the linear capture range of the lock loop by as much as an order of magnitude and provides frequency discrimination equivalent to or better than those of other commonly used locking techniques. (C) 2004 Optical Society of America
Resumo:
A waveguide-saturable absorber with low propagation loss is fabricated by femtosecond pulses in YAG:Cr4+ crystal. Q-switch operation of a Yb fiber laser with the new saturable absorber having absorption saturation parameters similar to the bulk YAG:Cr4+ crystal is demonstrated.
Resumo:
A pulsed Brillouin fibre ring laser has been developed and we describe its main features. The pump and the Brillouin laser are shown to form an excellent dual frequency source for distributed sensing. A first application for fire detection is demonstrated.
Resumo:
We describe a technique applicable to interferometric systems illuminated by a laser diode, whereby the optical path difference is recovered by means of sinusoidal modulation of the laser emission frequency.
Resumo:
Using a cavity mode model we study numerically the impact of bandwidth and spectral response profile of fibre Bragg gratings on four-wave-mixing-induced spectral broadening of radiation generated in 6 km and 22 km SMF-based Raman fibre lasers.
Resumo:
We propose a novel mode-locked fiber laser design that relies on attracting similariton solutions in fiber amplifiers with normal group-velocity dispersion and strong spectral filtering to compensate increased pulse duration and bandwidth. Stable high-energy, large-bandwidth pulses are obtained that can be linearly compressed, resulting in ultrashort pulses.
Resumo:
We measured the optical linewidths of a passively mode-locked quantum dot laser and show that, in agreement with theoretical predictions, the modal linewidth exhibits a parabolic dependence with the mode optical frequency. The minimum linewidth follows a Schawlow-Townes behavior with a rebroadening at high power. In addition, the slope of the parabola is proportional to the RF linewidth of the laser and can therefore provide a direct measurement of the timing jitter. Such a measurement could be easily applied to mode-locked semiconductor lasers with a fast repetition rate where the RF linewidth cannot be directly measured.