859 resultados para Large-scale gradient
Resumo:
Most departmental computing infrastructure reflects the state of networking technology and available funds at the time of construction, which converge in a preconceived notion of homogeneity of network architecture and usage patterns. The DMAN (Digital Media Access Network) project, a large-scale server and network foundation for the Hong Kong Polytechnic University's School of Design was created as a platform that would support a highly complex academic environment while giving maximum freedom to students, faculty and researchers through simplicity and ease of use. As a centralized multi-user computation backbone, DMAN faces an extremely hetrogeneous user and application profile, exceeding implementation and maintenance challenges of typical enterprise, and even most academic server set-ups. This paper sumarizes the specification, implementation and application of the system while describing its significance for design education in a computational context.
Resumo:
This paper draws on a study of government initiat ives aimed at facilitating economic development, specifically the Multifunction Polis Feasibility Study involving the governments and business enterprises of Australia and Japan (1987-1991). Large scale projects that involve collaboration between gove rnment and business (termed: large scale collaborative venture LSCV)are identified as one aspect of competing in the new economy . The study pursued the research propos ition that a LSCV can be effectively facilitated by following a theory based process similar to those in corporate practice. An approach to managing such ventures is outlined, based on strategic marketing theory that may enhance their success and thereby help countries part icipate more successfully in global competition through such ventures.
Resumo:
This paper relates to government initiatives which aim at advancing their country’s economic development and investor attractiveness. It identifies large scale projects that involve collaboration between government and business (termed: large scale collaborative venture – LSCV) as one aspect of competing in the new economy. The study pursued the research proposition that a LSCV can be effectively facilitated by following a theory based process similar to what is used in corporate practice. An approach to managing such ventures is outlined, based on strategic marketing theory applied to a major project, the Multifunction Polis. It is proposed that such an approach may enhance the success of a collaborative venture and thereby help countries participate more successfully in global competition through such ventures.
Resumo:
We introduce K-tree in an information retrieval context. It is an efficient approximation of the k-means clustering algorithm. Unlike k-means it forms a hierarchy of clusters. It has been extended to address issues with sparse representations. We compare performance and quality to CLUTO using document collections. The K-tree has a low time complexity that is suitable for large document collections. This tree structure allows for efficient disk based implementations where space requirements exceed that of main memory.
Resumo:
Climate change and human activity are subjecting the environment to unprecedented rates of change. Monitoring these changes is an immense task that demands new levels of automated monitoring and analysis. We propose the use of acoustics as a proxy for the time consuming auditing of fauna, especially for determining the presence/absence of species. Acoustic monitoring is deceptively simple; seemingly all that is required is a sound recorder. However there are many major challenges if acoustics are to be used for large scale monitoring of ecosystems. Key issues are scalability and automation. This paper discusses our approach to this important research problem. Our work is being undertaken in collaboration with ecologists interested both in identifying particular species and in general ecosystem health.
Resumo:
Precise, up-to-date and increasingly detailed road maps are crucial for various advanced road applications, such as lane-level vehicle navigation, and advanced driver assistant systems. With the very high resolution (VHR) imagery from digital airborne sources, it will greatly facilitate the data acquisition, data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lane information from aerial images with employment of the object-oriented image analysis method. Our proposed algorithm starts with constructing the DSM and true orthophotos from the stereo images. The road lane details are detected using an object-oriented rule based image classification approach. Due to the affection of other objects with similar spectral and geometrical attributes, the extracted road lanes are filtered with the road surface obtained by a progressive two-class decision classifier. The generated road network is evaluated using the datasets provided by Queensland department of Main Roads. The evaluation shows completeness values that range between 76% and 98% and correctness values that range between 82% and 97%.
Resumo:
The automatic extraction of road features from remote sensed images has been a topic of great interest within the photogrammetric and remote sensing communities for over 3 decades. Although various techniques have been reported in the literature, it is still challenging to efficiently extract the road details with the increasing of image resolution as well as the requirement for accurate and up-to-date road data. In this paper, we will focus on the automatic detection of road lane markings, which are crucial for many applications, including lane level navigation and lane departure warning. The approach consists of four steps: i) data preprocessing, ii) image segmentation and road surface detection, iii) road lane marking extraction based on the generated road surface, and iv) testing and system evaluation. The proposed approach utilized the unsupervised ISODATA image segmentation algorithm, which segments the image into vegetation regions, and road surface based only on the Cb component of YCbCr color space. A shadow detection method based on YCbCr color space is also employed to detect and recover the shadows from the road surface casted by the vehicles and trees. Finally, the lane marking features are detected from the road surface using the histogram clustering. The experiments of applying the proposed method to the aerial imagery dataset of Gympie, Queensland demonstrate the efficiency of the approach.
Resumo:
This paper describes technologies we have developed to perform autonomous large-scale off-world excavation. A scale dragline excavator of size similar to that required for lunar excavation was made capable of autonomous control. Systems have been put in place to allow remote operation of the machine from anywhere in the world. Algorithms have been developed for complete autonomous digging and dumping of material taking into account machine and terrain constraints and regolith variability. Experimental results are presented showing the ability to autonomously excavate and move large amounts of regolith and accurately place it at a specified location.
Resumo:
Routing trains within passenger stations in major cities is a common scheduling problem for railway operation. Various studies have been undertaken to derive and formulate solutions to this route allocation problem (RAP) which is particularly evident in mainland China nowadays because of the growing traffic demand and limited station capacity. A reasonable solution must be selected from a set of available RAP solutions attained in the planning stage to facilitate station operation. The selection is however based on the experience of the operators only and objective evaluation of the solutions is rarely addressed. In order to maximise the utilisation of station capacity while maintaining service quality and allowing for service disturbance, quantitative evaluation of RAP solutions is highly desirable. In this study, quantitative evaluation of RAP solutions is proposed and it is enabled by a set of indices covering infrastructure utilisation, buffer times and delay propagation. The proposed evaluation is carried out on a number of RAP solutions at a real-life busy railway station in mainland China and the results highlight the effectiveness of the indices in pinpointing the strengths and weaknesses of the solutions. This study provides the necessary platform to improve the RAP solution in planning and to allow train re-routing upon service disturbances.
Resumo:
Lean project management is the comprehensive adaption of other lean concept like lean construction, lean manufacturing and lean thinking into project management context. Execution of many similar industrial projects creates the idea of lean project management in companies and rapidly growing in industries. This paper offers the standardization method in order to achieve Lean project management in large scale industrial project. Standardization refers to all activity which makes two projects most identical and unify to each other like standardization of design, reducing output variability, value analysis and strategic management. Although standard project may have minor effi ciency decrease, compare to custom built project; but great advantage of standard project like cost saving, time reduction and quality improvement justify standardization methodology. This paper based on empirical experience in industrial project and theoretical analysis of benefi ts of project standardization.
Resumo:
Hollow micro-sized H2(H2O)Nb2O6 spheres constructed by nanocrystallites have been successfully synthesized via a bubble-template assisted hydrothermal process. In the reaction process, H2O2 acts as a bubble generator and plays a key role in the formation of the hollow structure. An in situ bubble-template mechanism has been proposed for the possible formation of the hollow structure. The spherelike assemblies of these H2(H2O)Nb2O6 nanoparticles have been transformed into their corresponding pseudohexagonal phase Nb2O5 through a moderate annealing dehydration process without destroying the hierarchical structure. Optical properties of the as-prepared hollow spheres were investigated. It is exciting that the absorption edge of the hollow Nb2O5 microspheres shifts about 18 nm to the violet compared with bulk powders in the UV/vis spectra, indicating its superior optical properties.
Resumo:
Acoustic sensors play an important role in augmenting the traditional biodiversity monitoring activities carried out by ecologists and conservation biologists. With this ability however comes the burden of analysing large volumes of complex acoustic data. Given the complexity of acoustic sensor data, fully automated analysis for a wide range of species is still a significant challenge. This research investigates the use of citizen scientists to analyse large volumes of environmental acoustic data in order to identify bird species. Specifically, it investigates ways in which the efficiency of a user can be improved through the use of species identification tools and the use of reputation models to predict the accuracy of users with unidentified skill levels. Initial experimental results are reported.