999 resultados para Language JAVA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Each plasma physics laboratory has a proprietary scheme to control and data acquisition system. Usually, it is different from one laboratory to another. It means that each laboratory has its own way to control the experiment and retrieving data from the database. Fusion research relies to a great extent on international collaboration and this private system makes it difficult to follow the work remotely. The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The choice of MDSplus (Model Driven System plus) is proved by the fact that it is widely utilized, and the scientists from different institutions may use the same system in different experiments in different tokamaks without the need to know how each system treats its acquisition system and data analysis. Another important point is the fact that the MDSplus has a library system that allows communication between different types of language (JAVA, Fortran, C, C++, Python) and programs such as MATLAB, IDL, OCTAVE. In the case of tokamak TCABR interfaces (object of this paper) between the system already in use and MDSplus were developed, instead of using the MDSplus at all stages, from the control, and data acquisition to the data analysis. This was done in the way to preserve a complex system already in operation and otherwise it would take a long time to migrate. This implementation also allows add new components using the MDSplus fully at all stages. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
El proyecto fin de carrera de herramienta de apoyo a la docencia en Sistemas Operativos quiere ayudar al alumno a entender el funcionamiento de un planificador a corto plazo. Lo hace mediante una representación gráfica de procesos que ocupan o el procesador o distintas unidades de entrada/salida mientras transcurre el tiempo. El tiempo está dividido en ciclos de reloj de un procesador, a lo que a continuación se referirá como unidades de tiempo. Los procesos están definidos por su nombre, la instante de entrada que entran al sistema, su prioridad y la secuencia de unidades de tiempo en el procesador y unidades de entrada/salida que necesitan para terminar su trabajo. El alumno puede configurar el sistema a su gusto en cuanto al número y comportamiento de las unidades de entrada/salida. Puede definir que una unidad solo permita acceso exclusivo a los procesos, es decir que solo un proceso puede ocuparla simultáneamente, o que permita el acceso múltiple a sus recursos. El alumno puede construir un planificador a corto plazo propio, integrarlo en el sistema y ver cómo se comporta. Se debe usar la interfaz Java proporcionada para su construcción. La aplicación muestra datos estadísticos como por ejemplo la eficiencia del sistema (el tiempo activo de la CPU dividido por el tiempo total de la simulación), tiempos de espera de los procesos, etc. Se calcula después de cada unidad de tiempo para que el alumno pueda ver el momento exacto donde la simulación tomó un giro inesperado. La aplicación está compuesta por un motor de simulación que contiene toda la lógica y un conjunto de clases que forman la interfaz gráfica que se presenta al usuario. Estos dos componentes pueden ser reemplazados siempre y cuando se mantenga la definición de sus conectores igual. La aplicación la he hecho de manejo muy simple e interfaz fácil de comprender para que el alumno pueda dedicar todo su tiempo a probar distintas configuraciones y situaciones y así entender mejor la asignatura. ABSTRACT. The project is called “Tool to Support Teaching of the Subject Operating Systems” and is an application that aims to help students understand on a deeper level the inner workings of how an operating system handles multiple processes in need of CPU time by the means of a short-term planning algorithm. It does so with a graphical representation of the processes that occupy the CPU and different input/output devices as time passes by. Time is divided in CPU cycles, from now on referred to as time units. The processes are defined by their name, the moment they enter the system, their priority and the sequence of time units they need to finish their job. The student can configure the system by changing the number and behavior of the input/output devices. He or she can define whether a device should only allow exclusive access, i.e. only one process can occupy it at any given time, or if it should allow multiple processes to access its resources. The student can build a planning algorithm of his or her own and easily integrate it into the system to see how it behaves. The provided Java interface and the programming language Java should be used to build it. The application shows statistical data, e.g. the efficiency of the system (active CPU time divided by total simulation time) and time spent by the processes waiting in queues. The data are calculated after passing each time unit in order for the student to see the exact moment where the simulation took an unexpected turn. The application is comprised of a simulation motor, which handles all the logic, and a set of classes, which is the graphical user interface. These two parts can be replaced individually if the definition of the connecting interfaces stays the same. I have made the application to be very easy to use and with an easy to understand user interface so the student can spend all of his or her time trying out different configurations and scenarios in order to understand the subject better.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
COSTA, Umberto Souza; MOREIRA, Anamaria Martins; MUSICANTE, Matin A.; SOUZA NETO, Plácido A. JCML: A specification language for the runtime verification of Java Card programs. Science of Computer Programming. [S.l]: [s.n], 2010.
Resumo:
Formal methods should be used to specify and verify on-card software in Java Card applications. Furthermore, Java Card programming style requires runtime verification of all input conditions for all on-card methods, where the main goal is to preserve the data in the card. Design by contract, and in particular, the JML language, are an option for this kind of development and verification, as runtime verification is part of the Design by contract method implemented by JML. However, JML and its currently available tools for runtime verification were not designed with Java Card limitations in mind and are not Java Card compliant. In this thesis, we analyze how much of this situation is really intrinsic of Java Card limitations and how much is just a matter of a complete re-design of JML and its tools. We propose the requirements for a new language which is Java Card compliant and indicate the lines on which a compiler for this language should be built. JCML strips from JML non-Java Card aspects such as concurrency and unsupported types. This would not be enough, however, without a great effort in optimization of the verification code generated by its compiler, as this verification code must run on the card. The JCML compiler, although being much more restricted than the one for JML, is able to generate Java Card compliant verification code for some lightweight specifications. As conclusion, we present a Java Card compliant variant of JML, JCML (Java Card Modeling Language), with a preliminary version of its compiler
Resumo:
With today's prevalence of Internet-connected systems storing sensitive data and the omnipresent threat of technically skilled malicious users, computer security remains a critically important field. Because of today's multitude of vulnerable systems and security threats, it is vital that computer science students be taught techniques for programming secure systems, especially since many of them will work on systems with sensitive data after graduation. Teaching computer science students proper design, implementation, and maintenance of secure systems is a challenging task that calls for the use of novel pedagogical tools. This report describes the implementation of a compiler that converts mandatory access control specification Domain-Type Enforcement Language to the Java Security Manager, primarily for pedagogical purposes. The implementation of the Java Security Manager was explored in depth, and various techniques to work around its inherent limitations were explored and partially implemented, although some of these workarounds do not appear in the current version of the compiler because they would have compromised cross-platform compatibility. The current version of the compiler and implementation details of the Java Security Manager are discussed in depth.
Resumo:
COSTA, Umberto Souza; MOREIRA, Anamaria Martins; MUSICANTE, Matin A.; SOUZA NETO, Plácido A. JCML: A specification language for the runtime verification of Java Card programs. Science of Computer Programming. [S.l]: [s.n], 2010.
Resumo:
COSTA, Umberto Souza; MOREIRA, Anamaria Martins; MUSICANTE, Matin A.; SOUZA NETO, Plácido A. JCML: A specification language for the runtime verification of Java Card programs. Science of Computer Programming. [S.l]: [s.n], 2010.
Resumo:
Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files
Resumo:
Over time, XML markup language has acquired a considerable importance in applications development, standards definition and in the representation of large volumes of data, such as databases. Today, processing XML documents in a short period of time is a critical activity in a large range of applications, which imposes choosing the most appropriate mechanism to parse XML documents quickly and efficiently. When using a programming language for XML processing, such as Java, it becomes necessary to use effective mechanisms, e.g. APIs, which allow reading and processing of large documents in appropriated manners. This paper presents a performance study of the main existing Java APIs that deal with XML documents, in order to identify the most suitable one for processing large XML files.
Resumo:
Este trabalho é uma parte do tema global “Suporte à Computação Paralela e Distribuída em Java”, também tema da tese de Daniel Barciela no mestrado de Engenharia Informática do Instituto Superior de Engenharia do Porto. O seu objetivo principal consiste na definição/criação da interface com o programador, assim como também abrange a forma como os nós comunicam e cooperam entre si para a execução de determinadas tarefas, de modo a atingirem um único objetivo global. No âmbito desta dissertação foi realizado um estudo prévio relativamente aos modelos teóricos referentes à computação paralela, assim como também foram analisadas linguagens e frameworks que fornecem suporte a este mesmo tipo de computação. Este estudo teve como principal objetivo a análise da forma como estes modelos e linguagens permitem ao programador expressar o processamento paralelo no desenvolvimento das aplicações. Como resultado desta dissertação surgiu a framework denominada Distributed Parallel Framework for Java (DPF4j), cujo objetivo principal é fornecer aos programadores o suporte para o desenvolvimento de aplicações paralelas e distribuídas. Esta framework foi desenvolvida na linguagem Java. Esta dissertação contempla a parte referente à interface de programação e a toda a comunicação entre nós cooperantes da framework DPF4j. Por fim, foi demonstrado através dos testes realizados que a DPF4j, apesar de ser ainda um protótipo, já demonstra ter uma performance superior a outras frameworks e linguagens que possuem os mesmos objetivos.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Informática.