961 resultados para Langmuir adsorption model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of p-nitrophenol in one untreated activated carbon (F100) and three treated activated carbons (H-2, H2SO4 and Urea treated F100) was carried out at undissociated and dissociated conditions. To characterize the carbon, N-2 and CO2 adsorption were used. X-ray Photoelectron Spectroscopy (XPS) was used to analyze the surface of the activated carbon. The experimental isotherms are fitted via the Langmuir homogenous model and Langmuir binary model. Variation of the model parameters with the solution pH is studied. Both Q(max) and the adsorption affinity coefficient (K-1) were dependent on the PZC of the carbons and solution pH. The Effect of pH must be considered due to its combined effects on the carbon surface and on the solute molecules. Adsorption of p-nitrophenol at higher pH was found to be dependent on the concentration of the anionic form of the solute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of adsorption of two dissociating and two non-dissociating aromatic compounds from dilute aqueous solutions on an untreated commercially available activated carbon (B.D.H.) was investigated systematically. All adsorption experiments were carried out in pH controlled aqueous solutions. The experimental isotherms were fitted into four different models (Langmuir homogenous Models, Langmuir binary Model, Langmuir-Freundlich single model and Langmuir-Freundlich double model). Variation of the model parameters with the solution pH was studied and used to gain further insight into the adsorption process. The relationship between the model parameters and the solution pH and pK(a) was used to predict the adsorption capacity in molecular and ionic form of solutes in other solution. A relationship was sought to predict the effect of pH on the adsorption systems and for estimating the maximum adsorption capacity of carbon at any pH where the solute is ionized reasonably well. N-2 and CO2 adsorption were used to characterize the carbon. X-ray Photoelectron Spectroscopy (XPS) measurement was used for surface elemental analysis of the activated carbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colored wastewater poses a challenge to the conventional wastewater treatment techniques. Solid-liquid phase adsorption has been found to be effective for the removal of dyes from effluent. In this paper, the ability of bentonite as an adsorbent for the removal of a commercial dye, Basic Red 2 (BR2), from an aqueous solution has been investigated under various experimental conditions. The adsorption kinetics was shown to be pseudo-second-order. It was found that bentonite had high adsorption capacity for BR2 due to cation exchange. The adsorption equilibrium data can be fitted well by the Langmuir adsorption isotherm model. The effect of the experimental parameters, such as temperature, salt, and pH was investigated through a number of batch adsorption experiments. It was found that the removal of dye increased with the increase in solution pH. However, the change of temperature (15-45 degrees C) and the addition of sodium chloride were found to have little effect on the adsorption process. The results show that electrostatic interactions are not dominant in the interaction between BR2 and bentonite. It was found that the adsorption was a rapid process with 80-90% of the dye removed within the first 2-3 min. Bentonite as an adsorbent is promising for color removal from wastewater.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nucleataon growth model of electrochemical phase formation is analysed for the hnear potential sweep input Apart from deducing diagnostic criteria and method~ of estimating model parameters, the predictions of the nucleation growth model are compared and contrasted with those of a sample adsorption model A dastlnCtlOn is made possible between adsorption and phase transition, which seems useful for understanding the nature of ECPF phenomena, especially underpotentlal deposition (UPD).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Batch adsorption of fluoride onto manganese dioxide-coated activated alumina (MCAA) has been studied. Adsorption experiments were carried out at various pH (3–9), time interval (0–6 h), adsorbent dose (1–16 g/l), initial fluoride concentration (1–25 mg/l) and in the presence of different anions. Adsorption isotherms have been modeled using Freundlich, Langmuir and Dubinin–Raduskevich isotherms and adsorption followed Langmuir isotherm model. Kinetic studies revealed that the adsorption followed second-order rate kinetics. MCAA could remove fluoride effectively (up to 0.2 mg/l) at pH 7 in 3 h with 8 g/l adsorbent dose when 10 mg/l of fluoride was present in 50 ml of water. In the presence of other anions, the adsorption of fluoride was retared. The mechanism of fluoride uptake by MCAA is due to physical adsorption as well as through intraparticle diffusion which was confirmed by kinetics, Dubinin–Raduskevich isotherm, zeta-potential measurements and mapping studies of energy-dispersive analysis of X-ray.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superabsorbent polymers (SAPs) of acrylic acid, sodium acrylate, and acrylamide (AM), crosslinked with ethylene glycol dimethacrylate, were synthesized by inverse suspension polymerization. The equilibrium swelling capacities of the SAPs were determined and these decreased with increasing AM content. The adsorption of the two cationic dyes, methylene blue and rhodamine 6G, on the dry as well as equilibrium swollen SAPs was investigated. The amount of the dye adsorbed at equilibrium per unit weight of the SAPs and the rate constants of adsorption were determined. The amount of the dye adsorbed at equilibrium by the SAPs decreased with increasing mol % of AM in the SAPs. The amount of the dye adsorbed at equilibrium was almost equal for the dry and equilibrium swollen SAPs. However, the equilibrium swollen SAPs adsorbed dyes at a higher rate than the dry SAPs. The higher rate of adsorption was attributed to the availability of all the anionic groups present in the fully elongated conformation of the SAPs in the equilibrium swollen state. The effect of initial dye concentration on the adsorption was also investigated and the adsorption was described by Langmuir adsorption isotherms. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A cationic monomer 2-(methacryloyloxy)ethyl]trimethylammonium chloride was polymerized using N,N'-methylenebisacrylamide as the crosslinker to obtain a cationic superabsorbent polymer (SAP). This SAP was characterized by Fourier transform-infrared spectroscopy, and the equilibrium swelling capacity was determined by swelling in water. The SAP was subjected to cyclic swelling/deswelling in water and NaCl solution. The conductivity of the swelling medium was monitored during the swelling/deswelling and was related to the swelling/deswelling characteristics of the SAP. The adsorption of five anionic dyes of different classes on the SAP was carried out and was found to follow the first-order kinetics. The Langmuir adsorption isotherms were found to fit the equilibrium adsorption data. The dye adsorption capacity of the SAP synthesized in this study was higher than that obtained for other hydrogels reported in the literature. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For the purpose of water purification, novel and low-cost adsorbents which are promising replacements for activated carbon are being actively pursued. However, a single-phase material that adsorbs both cationic and anionic species remains elusive. Hence, a low-cost, multiphase adsorbent bed that purifies water containing both anionic and cationic pollutants is a desirable alternative. We choose anionic (Congo red, Orange G) and cationic (methylene blue, malachite green) dyes as model pollutants. These dyes are chosen since they are widely found in effluents from textile, leather, fishery, and pharmaceutical industries, and their carcinogenic, mutagenic, genotoxic, and cytotoxic impact on mammalian cells is well-established. We show that ZnO, (Zn0.24Cu0.76)O and cobalt ferrite based multiphase fixed adsorbent bed efficiently adsorbs model anionic (Congo red, Orange G) and cationic (methylene blue and malachite green) pollutants, and their complex mixtures. All adsorbent phases are synthesized using room-temperature, high-yield (similar to 96-100%), green chemical processes. The nanoadsorbents are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and zeta potential measurements. The constituent nanophases are deliberately chosen to be beyond 50 nm, in order to avoid the nanotoxic size regime of oxides. Adsorption characteristics of each of the phases are examined. Isotherm based analysis shows that adsorption is both spontaneous and highly favorable. zeta potential measurements indicate that electrostatic interactions are the primary driving force for the observed adsorption behavior. The isotherms obtained are best described using a composite Langmuir-Freundlich model. Pseudo-first-order, rapid kinetics is observed (with adsorption rate constants as high as 0.1-0.2 min(-1) in some cases). Film diffusion is shown to be the primary mechanism of adsorption.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study was conducted on the adsorption of Escherichia coli bacteriophage T4 to activated carbon. Preliminary adsorption experiments were also made with poliovirus Type III. The effectiveness of such adsorbents as diatomaceous earth, Ottawa sand, and coconut charcoal was also tested for virus adsorption.

The kinetics of adsorption were studied in an agitated solution containing virus and carbon. The mechanism of attachment and site characteristics were investigated by varying pH and ionic strength and using site-blocking reagents.

Plaque assay procedures were developed for bacteriophage T4 on Escherichia coli cells and poliovirus Type III on monkey kidney cells. Factors influencing the efficiency of plaque formation were investigated.

The kinetics of bacteriophage T4 adsorption to activated carbon can be described by a reversible second-order equation. The reaction order was first order with respect to both virus and carbon concentration. This kinetic representation, however, is probably incorrect at optimum adsorption conditions, which occurred at a pH of 7.0 and ionic strength of 0.08. At optimum conditions the adsorption rate was satisfactorily described by a diffusion-limited process. Interpretation of adsorption data by a development of the diffusion equation for Langmuir adsorption yielded a diffusion coefficient of 12 X 10-8 cm2/sec for bacteriophage T4. This diffusion coefficient is in excellent agreement with the accepted value of 8 X 10-8 cm2/sec. A diffusion-limited theory may also represent adsorption at conditions other than the maximal. A clear conclusion on the limiting process cannot be made.

Adsorption of bacteriophage T4 to activated carbon obeys the Langmuir isotherm and is thermodynamically reversible. Thus virus is not inactivated by adsorption. Adsorption is unimolecular with very inefficient use of the available carbon surface area. The virus is probably completely excluded from pores due to its size.

Adsorption is of a physical nature and independent of temperature. Attraction is due to electrostatic forces between the virus and carbon. Effects of pH and ionic strength indicated that carboxyl groups, amino groups, and the virus's tail fibers are involved in the attachment of virus to carbon. The active sites on activated carbon for adsorption of bacteriophage T4 are carboxyl groups. Adsorption can be completely blocked by esterifying these groups.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

No presente trabalho, pretendeu-se avaliar a alga marinha Sargassum filipendula na sua capacidade de remoção do metal cobre na presença do metal cálcio, de modo a verificar o efeito da presença do cálcio, proveniente do hidróxido de cálcio (cal hidratada), utilizado no tratamento primário de efluentes por precipitação química. Para tanto, foi realizado primeiramente o estudo da cinética de biossorção de cobre e cálcio em regime de batelada, nas concentrações de 50 e 200 g/mL, e em seguida foi estudado o equilíbrio da biossorção de cobre e cálcio, também em regime de batelada, utilizando soluções isoladas e combinadas de cobre e cálcio, em concentrações variadas, com biomassa lavada com água corrente e com HCl 0,1 mol/L, de modo a verificar se houve melhora na biossorção com a protonação da biomassa. Os resultados do estudo cinético da biossorção do cobre e do cálcio mostraram, em todos os casos, que o equilíbrio ocorreu até os 30 minutos iniciais e que os resultados do cobre se ajustaram melhor a um modelo cinético de segunda ordem, enquanto que os resultados do cálcio não se ajustaram a nenhum dos dois modelos propostos. Foi possível verificar ainda uma relação direta entre biossorção de cobre e liberação de elementos alcalinos e alcalino-terrosos, sugerindo o envolvimento de troca-iônica durante o processo. Já com os resultados de estudo do equilíbrio da biossorção dos metais cobre e cálcio, foi possível obter algumas conclusões, dentre as quais podemos destacar a predileção pelo modelo de isotermas de Langmuir e a interferência na biosorção do cobre causada pela presença do cálcio na solução. Nesta etapa, foi possível ainda estabelecer novamente a correlação de permuta entre os metais cobre e alcalinos/alcalino terrosos. Os modelos de pseudo-primeira ordem e segunda ordem foram utilizados para avaliar a cinética de adsorção dos íons metálicos pela biomassa, enquanto que os modelos das isotermas de Langmuir e de Freundlich, foram utilizados para a representação do equilíbrio da biossorção

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adsorption behavior of methanol, ethanol, n-butanol, n-hexanol and n-octanol on mica surface was investigated by atomic force microscopy. All these alcohols have formed homogeneous films with different characteristics. Upright standing bilayer structure was formed on methanol adsorbed mica surface. For ethanol, bilayer structure and monolayer one were simultaneously formed, while for n-butanol and n-hexanol, rough films were observed. What was formed for n-octanol? Close-packed flat film was observed on n-octanol adsorbed mica substrate, the film was assumed to be a tilted monolayer. The possible adsorption model for each alcohol molecule was proposed according to its adsorption behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heteropoly acids (HPAs), such as dodecatungstosilicic acid (SiW12), adsorb strongly on to activated carbons. The surface chemical properties of the activated carbons have a pronounced effect on the adsorption of HPAs. To obtain activated carbons with the desired surface chemical properties, modification with mineral acids has been applied. The adsorption isotherms of SiW12 from aqueous solution and various acidic media on to the various carbons have been studied. On the basis of the results obtained, an adsorption model for HPAs from acidic media is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The oxo-triazole derivative (DTP) was synthesized and its inhibiting action on the corrosion of mild steel in sulphuric acid was investigated by means of weight loss, potentiodynamic polarization, EIS and SEM. The results revealed that DTP was an excellent inhibitor and the inhibition efficiencies obtained from weight loss experiment and electrochemical experiment were in good agreement. Potentiodynamic polarization studies clearly revealed that DTP acted essentially as the mixed-type inhibitor. Thermodynamic and kinetic parameters were obtained from weight loss of the different experimental temperatures, which suggested that at different temperatures (298-333 K) the adsorption of DTP on metal surface obeyed Langmuir adsorption isotherm model. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three triazole derivatives (4-chloro-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (CATM), 4-methoxyl-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (MATM) and 4-fluoro-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (FATM)) have been synthesized as new inhibitors for the corrosion of mild steel in acid media. The inhibition efficiencies of these inhibitors were evaluated by means of weight loss and electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and polarization curves. Then the surface morphology was studied by scanning electron microscopy (SEM). The adsorption of triazole derivatives is found to obey Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The relationship between molecular structure of these compounds and their inhibition efficiency has been investigated by ab initio quantum chemical calculations. The electronic properties such as the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energy levels, energy gap (LUMO-HOMO), dipole moment and molecular orbital densities were computed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For the design of affinity membranes, protein adsorption in membrane affinity chromatography (MAC) was studied by frontal analysis. According to fast mass transfer, small thickness of affinity membranes and high affinity between the protein and the ligand, an ideal adsorption (IA) model was proposed for MAC and was used together with equilibrium-dispersive (E-D) model to describe the adsorption of bovine serum albumin (BSA) onto cellulose diacetate/polyethyleneimine (CA/PEI) blend membranes with and without Cu2+ chelating. E-D model was found to better describe the initial region of experimental breakthrough curves. The influence of axial dispersion was revealed and it showed the importance of design of the module to homogenously distribute feed solution. IA model was found to be better for the whole experimental breakthrough curve. According to it, the capacity of affinity membranes and the specificity of the interaction are of equal importance for the design of affinity membranes. An optimum feed concentration was also found in the operation of MAC. The discrepancy between experimental optimum feed concentrations and predicted ones from IA model may be due to the ignorance of some experimental effects such as axial dispersion.