999 resultados para Landsat-8
Resumo:
In the shallow continental shelf in Northeastern Rio Grande do Norte - Brazil, important underwater geomorphological features can be found 6km from the coastline. They are coral reefs, locally known as “parrachos”. The present study aims to characterize and analyze the geomorphological feature as well as the ones of the benthic surface, and the distribution of biogenic sediments found in parrachos at Rio do Fogo and associated shallow platforms, by using remote sensing products and in situ data collections. This was made possible due to sedimentological, bathymetric and geomorphological maps elaborated from composite bands of images from the satellite sensors ETM+/Landsat-7, OLI/Landsat-8, MS/GeoEye and PAN/WordView-1, and analysis of bottom sediments samples. These maps were analyzed, integrally interpreted and validated in fieldwork, thus permitting the generation of a new geomorphological zoning of the shallow shelf in study and a geoenvironmental map of the Parrachos in Rio do Fogo. The images used were subject to Digital Image Processing techniques. All obtained data and information were stored in a Geographic Information System (GIS) and can become available to the scientific community. This shallow platform has a carbonate bottom composed mostly by algae. Collected and analyzed sediment samples can be classified as biogenic carbonatic sands, as they are composed 75% by calcareous algae, according to the found samples. The most abundant classes are green algae, red algae, nonbiogenic sediments (mineral grains), ancient algae and molluscs. At the parrachos the following was mapped: Barreta Channel, intertidal reefs, submerged reefs, the spur and grooves, the pools, the sandy bank, the bank of algae, sea grass, submerged roads and Rio do Fogo Channel. This work presents new information about geomorphology and evolution in the study area, and will be guiding future decision making in the handling and environmental management of the region
Resumo:
This study used Landsat 8 satellite imagery to identify environmental variables of households with malaria vector breeding sites in a malaria endemic rural district in Western Kenya. Understanding the influence of environmental variables on the distribution of malaria has been critical in the strengthening of malaria control programs. Using remote sensing and GIS technologies, this study performed a land classification, NDVI, Tasseled Cap Wetness Index, and derived land surface temperature values of the study area and examined the significance of each variable in predicting the probability of a household with a mosquito breeding site with and without larvae. The findings of this study revealed that households with any potential breeding sites were characterized by higher moisture, higher vegetation density (NDVI) and in urban areas or roads. The results of this study also confirmed that land surface temperature was significant in explaining the presence of active mosquito breeding sites (P< 0.000). The present study showed that freely available Landsat 8 imagery has limited use in deriving environmental characteristics of malaria vector habitats at the scale of the Bungoma East District in Western Kenya.
Resumo:
The amount and quality of available biomass is a key factor for the sustainable livestock industry and agricultural management related decision making. Globally 31.5% of land cover is grassland while 80% of Ireland’s agricultural land is grassland. In Ireland, grasslands are intensively managed and provide the cheapest feed source for animals. This dissertation presents a detailed state of the art review of satellite remote sensing of grasslands, and the potential application of optical (Moderate–resolution Imaging Spectroradiometer (MODIS)) and radar (TerraSAR-X) time series imagery to estimate the grassland biomass at two study sites (Moorepark and Grange) in the Republic of Ireland using both statistical and state of the art machine learning algorithms. High quality weather data available from the on-site weather station was also used to calculate the Growing Degree Days (GDD) for Grange to determine the impact of ancillary data on biomass estimation. In situ and satellite data covering 12 years for the Moorepark and 6 years for the Grange study sites were used to predict grassland biomass using multiple linear regression, Neuro Fuzzy Inference Systems (ANFIS) models. The results demonstrate that a dense (8-day composite) MODIS image time series, along with high quality in situ data, can be used to retrieve grassland biomass with high performance (R2 = 0:86; p < 0:05, RMSE = 11.07 for Moorepark). The model for Grange was modified to evaluate the synergistic use of vegetation indices derived from remote sensing time series and accumulated GDD information. As GDD is strongly linked to the plant development, or phonological stage, an improvement in biomass estimation would be expected. It was observed that using the ANFIS model the biomass estimation accuracy increased from R2 = 0:76 (p < 0:05) to R2 = 0:81 (p < 0:05) and the root mean square error was reduced by 2.72%. The work on the application of optical remote sensing was further developed using a TerraSAR-X Staring Spotlight mode time series over the Moorepark study site to explore the extent to which very high resolution Synthetic Aperture Radar (SAR) data of interferometrically coherent paddocks can be exploited to retrieve grassland biophysical parameters. After filtering out the non-coherent plots it is demonstrated that interferometric coherence can be used to retrieve grassland biophysical parameters (i. e., height, biomass), and that it is possible to detect changes due to the grass growth, and grazing and mowing events, when the temporal baseline is short (11 days). However, it not possible to automatically uniquely identify the cause of these changes based only on the SAR backscatter and coherence, due to the ambiguity caused by tall grass laid down due to the wind. Overall, the work presented in this dissertation has demonstrated the potential of dense remote sensing and weather data time series to predict grassland biomass using machine-learning algorithms, where high quality ground data were used for training. At present a major limitation for national scale biomass retrieval is the lack of spatial and temporal ground samples, which can be partially resolved by minor modifications in the existing PastureBaseIreland database by adding the location and extent ofeach grassland paddock in the database. As far as remote sensing data requirements are concerned, MODIS is useful for large scale evaluation but due to its coarse resolution it is not possible to detect the variations within the fields and between the fields at the farm scale. However, this issue will be resolved in terms of spatial resolution by the Sentinel-2 mission, and when both satellites (Sentinel-2A and Sentinel-2B) are operational the revisit time will reduce to 5 days, which together with Landsat-8, should enable sufficient cloud-free data for operational biomass estimation at a national scale. The Synthetic Aperture Radar Interferometry (InSAR) approach is feasible if there are enough coherent interferometric pairs available, however this is difficult to achieve due to the temporal decorrelation of the signal. For repeat-pass InSAR over a vegetated area even an 11 days temporal baseline is too large. In order to achieve better coherence a very high resolution is required at the cost of spatial coverage, which limits its scope for use in an operational context at a national scale. Future InSAR missions with pair acquisition in Tandem mode will minimize the temporal decorrelation over vegetation areas for more focused studies. The proposed approach complements the current paradigm of Big Data in Earth Observation, and illustrates the feasibility of integrating data from multiple sources. In future, this framework can be used to build an operational decision support system for retrieval of grassland biophysical parameters based on data from long term planned optical missions (e. g., Landsat, Sentinel) that will ensure the continuity of data acquisition. Similarly, Spanish X-band PAZ and TerraSAR-X2 missions will ensure the continuity of TerraSAR-X and COSMO-SkyMed.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, 2015.
Resumo:
Le nerprun bourdaine (Rhamnus frangula L.) est une espèce exotique qui envahit plusieurs régions du sud du Québec, et plus particulièrement la région administrative de l'Estrie. Actuellement, on connaît encore peu l'écologie de l'espèce dans le contexte québécois et il n’existe pas de portrait d’ensemble de sa distribution dans les forêts tempérées de cette région. Dans ce contexte, le premier objectif du projet était de cartographier par télédétection la distribution du nerprun bourdaine dans deux secteurs de l'Estrie. Un second objectif était d'évaluer les variables environnementales déterminantes pour expliquer le recouvrement de nerprun bourdaine. La phénologie du nerprun bourdaine diffère de celle de la plupart des espèces indigènes arborescentes puisque ses feuilles tombent plus tard en automne. Cette caractéristique a permis de cartographier, par démixage spectral, la probabilité d'occurrence du nerprun bourdaine grâce à une série temporelle d'images du capteur OLI de Landsat 8. Le recouvrement du nerprun bourdaine a été calculé dans 119 placettes sur le terrain. La cartographie résultante a montré un accord de 69% avec les données terrain. Une image SPOT-7, dont la résolution spatiale est plus fine, a ensuite été utilisée, mais n’a pas permis d'améliorer la cartographie, puisque la date d’acquisition de l’image n’était pas optimale dû à un manque de disponibilité. Concernant le second objectif de la recherche, la variable la plus significative pour expliquer la présence de nerprun bourdaine était la densité du peuplement, ce qui suggère que l’ouverture de la couverture forestière pourrait favoriser l’envahissement. Néanmoins, les résultats tendent à démontrer que le nerprun bourdaine est une espèce «généraliste» qui s’adapte bien à plusieurs conditions environnementales.
Resumo:
Le nerprun bourdaine (Rhamnus frangula L.) est une espèce exotique qui envahit plusieurs régions du sud du Québec, et plus particulièrement la région administrative de l'Estrie. Actuellement, on connaît encore peu l'écologie de l'espèce dans le contexte québécois et il n’existe pas de portrait d’ensemble de sa distribution dans les forêts tempérées de cette région. Dans ce contexte, le premier objectif du projet était de cartographier par télédétection la distribution du nerprun bourdaine dans deux secteurs de l'Estrie. Un second objectif était d'évaluer les variables environnementales déterminantes pour expliquer le recouvrement de nerprun bourdaine. La phénologie du nerprun bourdaine diffère de celle de la plupart des espèces indigènes arborescentes puisque ses feuilles tombent plus tard en automne. Cette caractéristique a permis de cartographier, par démixage spectral, la probabilité d'occurrence du nerprun bourdaine grâce à une série temporelle d'images du capteur OLI de Landsat 8. Le recouvrement du nerprun bourdaine a été calculé dans 119 placettes sur le terrain. La cartographie résultante a montré un accord de 69% avec les données terrain. Une image SPOT-7, dont la résolution spatiale est plus fine, a ensuite été utilisée, mais n’a pas permis d'améliorer la cartographie, puisque la date d’acquisition de l’image n’était pas optimale dû à un manque de disponibilité. Concernant le second objectif de la recherche, la variable la plus significative pour expliquer la présence de nerprun bourdaine était la densité du peuplement, ce qui suggère que l’ouverture de la couverture forestière pourrait favoriser l’envahissement. Néanmoins, les résultats tendent à démontrer que le nerprun bourdaine est une espèce «généraliste» qui s’adapte bien à plusieurs conditions environnementales.
Resumo:
O uso de imagens de satélite é um dos caminhos mais econômicos e representativos do comportamento agrícola de uma propriedade, pois as informações contidas nas imagens orbitais fornecem respostas rápidas, confiáveis e essenciais para o mapeamento eficiente dessas áreas. Dentre as informações obtidas pelas imagens estão os índices de vegetação (IV), geralmente, a vegetação em bom desenvolvimento vegetativo absorve a radiação na região do visível para a realização a fotossíntese. A intensidade da resposta é mais relevante quanto mais desenvolvida estiver a planta, portanto, o IV reflete o estado de desenvolvimento da cultura, bem como a probabilidade de rendimento. Dentre os índices mais utilizados atualmente destaca-se o Índice de Vegetação por Diferença Normalizada (NDVI), bastante utilizado nos estudos de caracterização e monitoramento da vegetação. Possui uma escala de variação linear entre ? 1 e 1, é indicador da quantidade e condição da vegetação, estando ligado diretamente ao tipo, a densidade e umidade da superfície. Huete (1988) propôs uma modificação do NDVI com intuito de minimizar os efeitos da variabilidade, do tipo e densidade da vegetação, criando assim o Índice de Vegetação ajustado ao Solo (SAVI). O objetivo do estudo é espacializar, gerar mapas temáticos, e verificar através dos IV?s as condições de cobertura vegetal dos solos no DITALPI, no ano de 2014, a partir de análises espectrais de imagens do satélite Landsat - 8, sensor OLI e TIRS, utilizando técnicas de sensoriamento remoto.
Resumo:
O Maranhão apresenta grande variabilidade ambiental por estar situado na região de transição entre os biomas Amazônia e Cerrado. A intensificação do uso das terras do Bioma Amazônia no Maranhão tem ocasionado expressiva perda de biodiversidade e diminuição de territórios de populações tradicionais. O zoneamento ecológico-econômico é de fundamental importância para esse cenário, pois é um instrumento que subsidia o planejamento e gerenciamento estratégico fundamentado no sensoriamento remoto, geoprocessamento e nas tecnologias de informação para o desenvolvimento territorial. O estado tem escassez de estudos relacionados ao mapeamento do Bioma Amazônia, apesar de esse estado apresentar importância nacional no sentido ecológico, potencial agrícola e econômico. Nosso objetivo neste trabalho foi fazer o mapeamento preliminar do Bioma Amazônia no Maranhão como subsídio ao zoneamento ecológico-econômico do estado. Foram utilizados dados vetoriais provenientes do Instituto Brasileiro de Geografia e Estatística (IBGE) e imagens de satélite disponibilizadas pelo site da United States Geological Survey (USGS). Foi feito o levantamento de dados correspondentes a uso e cobertura das terras, biomas, solos e vegetação, na escala de 1: 250.000, e imagens Landsat 8 tendo como referência o ano de 2015. Os dados vetoriais e as imagens de satélites foram coletados, armazenados, tratados e posteriormente representados em mapas. A partir do mapeamento foi possível analisar as áreas de Bioma Amazônia no estado e definir as áreas de uso e cobertura das terras, biomas, solos e vegetação, contribuindo, assim, para o planejamento e a gestão territorial do Estado do Maranhão.
Resumo:
We studied the Paraíba do Sul river watershed , São Paulo state (PSWSP), Southeastern Brazil, in order to assess the land use and cover (LULC) and their implication s to the amount of carbon (C) stored in the forest cover between the years 1985 and 2015. Th e region covers a n area of 1,395,975 ha . We used images made by the Operational Land Imager (OLI) sensor (OLI/Landsat - 8) to produce mappings , and image segmentation techniques to produce vectors with homogeneous characteristics. The training samples and the samples used for classification and validation were collected from the segmented image. To quantify the C stocked in aboveground live biomass (AGLB) , we used an indirect method and applied literature - based reference values. The recovery of 205,690 ha of a secondary Native Forest (NF) after 1985 sequestered 9.7 Tg (Teragram) of C . Considering the whole NF area (455,232 ha), the amount of C accumulated al ong the whole watershed was 3 5 .5 Tg , and the whole Eucalyptus crop (EU) area (113,600 ha) sequester ed 4. 4 Tg of C. Thus, the total amount of C sequestered in the whole watershed (NF + EU) was 3 9 . 9 Tg of C or 1 45 . 6 Tg of CO 2 , and the NF areas were responsible for the large st C stock at the watershed (8 9 %). Therefore , the increase of the NF cover contribut es positively to the reduction of CO 2 concentration in the atmosphere, and Reducing Emissions from Deforestation and Forest Degradation (REDD + ) may become one of the most promising compensation mechanisms for the farmers who increased forest cover at their farms.
Resumo:
The Simple Algorithm for Evapotranspiration Retrieving (SAFER) was used to estimate biophysical parameters and theenergy balance components in two different pasture experimental areas, in the São Paulo state, Brazil. The experimentalpastures consist in six rotational (RGS) and three continuous grazing systems (CGS) paddocks. Landsat-8 images from2013 and 2015 dry and rainy seasons were used, as these presented similar hydrological cycle, with 1,600 mm and 1,613mm of annual precipitation, resulting in 19 cloud-free images. Bands 1 to 7 and thermal bands 10 and 11 were used withweather data from a station located nearthe experimental area. NDVI, biomass, evapotranspiration and latent heat flux(λE) temporal values statistically differ CGS from RGS areas. Grazing systems influences the energy partition and theseresults indicate that RGS benefits biomass production, evapotranspiration and the microclimate, due higher LE values.SAFER is a feasible tool to estimate biophysical parameters and energy balance components in pasture and has potentialto discriminate continuous and rotation grazing systems in a temporal analysis.
Resumo:
Time Series Analysis of multispectral satellite data offers an innovative way to extract valuable information of our changing planet. This is now a real option for scientists thanks to data availability as well as innovative cloud-computing platforms, such as Google Earth Engine. The integration of different missions would mitigate known issues in multispectral time series construction, such as gaps due to clouds or other atmospheric effects. With this purpose, harmonization among Landsat-like missions is possible through statistical analysis. This research offers an overview of the different instruments from Landsat and Sentinel missions (TM, ETM, OLI, OLI-2 and MSI sensors) and products levels (Collection-2 Level-1 and Surface Reflectance for Landsat and Level-1C and Level-2A for Sentinel-2). Moreover, a cross-sensors comparison was performed to assess the interoperability of the sensors on-board Landsat and Sentinel-2 constellations, having in mind a possible combined use for time series analysis. Firstly, more than 20,000 pairs of images almost simultaneously acquired all over Europe were selected over a period of several years. The study performed a cross-comparison analysis on these data, and provided an assessment of the calibration coefficients that can be used to minimize differences in the combined use. Four of the most popular vegetation indexes were selected for the study: NDVI, EVI, SAVI and NDMI. As a result, it is possible to reconstruct a longer and denser harmonized time series since 1984, useful for vegetation monitoring purposes. Secondly, the spectral characteristics of the recent Landsat-9 mission were assessed for a combined use with Landsat-8 and Sentinel-2. A cross-sensor analysis of common bands of more than 3,000 almost simultaneous acquisitions verified a high consistency between datasets. The most relevant discrepancy has been observed in the blue and SWIRS bands, often used in vegetation and water related studies. This analysis was supported with spectroradiometer ground measurements.
Resumo:
Por medio de técnicas de tratamiento de imágenes digitales se realiza un estudio de los efectos producidos por una inundación ocurrida a finales del año 1982 en el valle del río Segre, en Catalunya, a partir de la información multiespectral captada por el sensor TM del satélite LANDSAT-4. Utilizando un programa de clasificación no supervisada basado en la distancia euclídea, se diferencian cuatro tipos de suelo o de cubiertas en el rea de estudio (3.8 x 2.3 km). Se efecta un análisis cuantitativo de la calidad de los resultados, usando como referencia la información obtenida en un estudio de campo. Este análisis muestra un alto grado de correspondencia entre el mapa de campo (verdad terreno) y la cartografía realizada a partir de los datos multiespectrales.
Resumo:
Este estudo apresenta um mapa da cobertura vegetal da planície de inundação do Rio Amazonas entre as cidades de Parintins (AM) e Almeirim (PA), com base em imagens Landsat-MSS adquiridas entre 1975 e 1981. O processamento digital dessas imagens envolveu a transformação para imagens-fração de vegetação, solo e água escura (sombra), seguido da aplicação de técnicas de segmentação e classificação por região. O mapa resultante da classificação foi organizado em quatro classes de cobertura do solo: floresta de várzea, vegetação não-florestal de várzea, solo exposto e água aberta. A precisão do mapa foi estimada a partir de dois tipos de informações coletadas em campo: 1) pontos de descrição: para validação das classes de cobertura não sujeitas a grandes alterações, como é o caso dos corpos d'água permanentes, e identificação de indicadores dos tipos de cobertura original presentes na paisagem na ocasião da obtenção das imagens (72 pontos); 2) entrevistas com moradores antigos para a recuperação da memória sobre a cobertura vegetal existente há 30 anos (44 questionários). Ao todo foram coletadas informações em 116 pontos distribuídos ao longo da área de estudo. Esses pontos foram utilizados para calcular o Índice Kappa de concordância entre os dados de campo e o mapa resultante da classificação automática, cujo valor (0,78) indica a boa qualidade do mapa de cobertura vegetal da várzea. Os resultados mostram que a região possuía uma cobertura florestal de várzea de aproximadamente 8.650 km2 no período de aquisição das imagens.
Resumo:
É feita a análise de áreas com diferentes classes de declividade (A = 0-3%, B = 3-8%, C = 8-16% e D = 16-30%) sscom a fina1idade de se verificar a potencialidade de imagens TM/LANDSAT, na escala 1:100.000, para planejamento agrícola. Devido à ausência de visão tridimensional, o trabalho baseia-se nas relações quantitativas entre índices dedrenagem (freqüência de rios e densidade de drenagem) determinados a partir das imagens, e expressão do relevo (declividade média) extraída de cartas planialtimétricas, na escala 1:50.000. Fotografias aéreas na escala 1:35.000 são utilizadas para fins comparativos. Conclui-se que o uso dessas imagens para mapear classes de declividade através do padrão de drenagem é viável, embora as características regionais o tenham limitado para diferenciar mais facilmente áreas com declividades A e B de áreas com declividades C e D.
Resumo:
El uso de imágenes procedentes de sensores multiespectrales de resolución media como es el caso de Landsat TM ha sido ampliamente utilizado desde décadas para detectar, entre otras variables, el decaimiento y la defoliación provocada por plagas y enfermedades forestales. El presente trabajo evalúa la utilidad del uso de estas imágenes en la detección de rodales de pino laricio (Pinus nigra Arn.) y pino silvestre (Pinus sylvestris L.) afectados por escolítidos. El área de estudio se localizó en el Solsonés (prepirineo de Lleida) seleccionando 34 áreas de entrenamiento (17 rodales afectados por la plaga y 17 rodales sanos). El análisis exploratorio de las imágenes se realizó mediante el programa ERDAS® IMAGINE 8.x. Los resultados del estudio mostraron una significación espectral en 5 de las 7 bandas analizadas, siendo TM5 y TM7 las que mejor comportamiento presentaron. Los niveles digitales obtenidos y los espacios de características creados señalaron sendas tendencias al agrupamiento de rodales afectados versus sanos, consiguiéndose plantear mejoras en el procedimiento metodológico.