880 resultados para Land Suitability Analysis
Resumo:
In the recent past, hardly anyone could predict this course of GIS development. GIS is moving from desktop to cloud. Web 2.0 enabled people to input data into web. These data are becoming increasingly geolocated. Big amounts of data formed something that is called "Big Data". Scientists still don't know how to deal with it completely. Different Data Mining tools are used for trying to extract some useful information from this Big Data. In our study, we also deal with one part of these data - User Generated Geographic Content (UGGC). The Panoramio initiative allows people to upload photos and describe them with tags. These photos are geolocated, which means that they have exact location on the Earth's surface according to a certain spatial reference system. By using Data Mining tools, we are trying to answer if it is possible to extract land use information from Panoramio photo tags. Also, we tried to answer to what extent this information could be accurate. At the end, we compared different Data Mining methods in order to distinguish which one has the most suited performances for this kind of data, which is text. Our answers are quite encouraging. With more than 70% of accuracy, we proved that extracting land use information is possible to some extent. Also, we found Memory Based Reasoning (MBR) method the most suitable method for this kind of data in all cases.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
This paper analyses the consequences of enhanced biofuel production in regions and countries of the world that have announced plans to implement or expand on biofuel policies. The analysis considers biofuel policies implemented as binding blending targets for transportation fuels. The chosen quantitative modelling approach is two-fold: it combines the analysis of biofuel policies in a multi-sectoral economic model (MAGNET) with systematic variation of the functioning of capital and labour markets. This paper adds to existing research by considering biofuel policies in the EU, the US and various other countries with considerable agricultural production and trade, such as Brazil, India and China. Moreover, the application multi-sectoral modelling system with different assumptions on the mobility of factor markets allows for the observation of changes in economic indicators under different conditions of how factor markets work. Systematic variation of factor mobility indicates that the ‘burden’ of global biofuel policies is not equally distributed across different factors within agricultural production. Agricultural land, as the pre-dominant and sector-specific factor, is, regardless of different degrees of inter-sectoral or intra-sectoral factor mobility, the most important factor limiting the expansion of agricultural production. More capital and higher employment in agriculture will ease the pressure on additional land use – but only partly. To expand agricultural production at global scale requires both land and mobile factors adapted to increase total factor productivity in agriculture in the most efficient way.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In genere, negli studi di vocazionalità delle colture, vengono presi in considerazione solo variabili ambientali pedo-climatiche. La coltivazione di una coltura comporta anche un impatto ambientale derivante dalle pratiche agronomiche ed il territorio può essere più o meno sensibile a questi impatti in base alla sua vulnerabilità. In questo studio si vuole sviluppare una metodologia per relazionare spazialmente l’impatto delle colture con le caratteristiche sito specifiche del territorio in modo da considerare anche questo aspetto nell’allocazione negli studi di vocazionalità. LCA è stato utilizzato per quantificare diversi impatti di alcune colture erbacee alimentari e da energia, relazionati a mappe di vulnerabilità costruite con l’utilizzo di GIS, attraverso il calcolo di coefficienti di rischio di allocazione per ogni combinazione coltura-area vulnerabile. Le colture energetiche sono state considerate come un uso alternativo del suolo per diminuire l’impatto ambientale. Il caso studio ha mostrato che l’allocazione delle colture può essere diversa in base al tipo e al numero di impatti considerati. Il risultato sono delle mappe in cui sono riportate le distribuzioni ottimali delle colture al fine di minimizzare gli impatti, rispetto a mais e grano, due colture alimentari importanti nell’area di studio. Le colture con l’impatto più alto dovrebbero essere coltivate nelle aree a vulnerabilità bassa, e viceversa. Se il rischio ambientale è la priorità, mais, colza, grano, girasole, e sorgo da fibra dovrebbero essere coltivate solo nelle aree a vulnerabilità bassa o moderata, mentre, le colture energetiche erbacee perenni, come il panico, potrebbero essere coltivate anche nelle aree a vulnerabilità alta, rappresentando cosi una opportunità per aumentare la sostenibilità di uso del suolo rurale. Lo strumento LCA-GIS inoltre, integrato con mappe di uso attuale del suolo, può aiutare a valutarne il suo grado di sostenibilità ambientale.