125 resultados para Lamination
Resumo:
Literature of the ancient Chola Dynasty (A.D. 9th-11th centuries) of South India and recent archaeological excavations allude to a sea flood that crippled the ancient port at Kaveripattinam, a trading hub for Southeast Asia, and probably affected the entire South Indian coast, analogous to the 2004 Indian Ocean tsunami impact. We present sedimentary evidence from an archaeological site to validate the textual references to this early medieval event. A sandy layer showing bed forms representing high-energy conditions, possibly generated by a seaborne wave, was identified at the Kaveripattinam coast of Tamil Nadu, South India. Its sedimentary characteristics include hummocky cross-stratification, convolute lamination with heavy minerals, rip-up clasts, an erosional contact with the underlying mud bed, and a landward thinning geometry. Admixed with 1000-year-old Chola period artifacts, it provided an optically stimulated luminescence age of 1091 perpendicular to 66 yr and a thermoluminescence age of 993 perpendicular to 73 yr for the embedded pottery sherds. The dates of these proxies converge around 1000 yr B. P., correlative of an ancient tsunami reported from elsewhere along the Indian Ocean coasts. (C) 2011 Wiley Periodicals, Inc.
Resumo:
The Packaging Research Center has been developing next generation system-on-a-package (SOP) technology with digital, RF, optical, and sensor functions integrated in a single package/module. The goal of this effort is to develop a platform substrate technology providing very high wiring density and embedded thin film passive and active components using PWB compatible materials and processes. The latest SOP baseline process test vehicle has been fabricated on novel Si-matched CTE, high modulus C-SiC composite core substrates using 10mum thick BCB dielectric films with loss tangent of 0.0008 and dielectric constant of 2.65. A semi-additive plating process has been developed for multilayer microvia build-up using BCB without the use of any vacuum deposition or polishing/CMP processes. PWB and package substrate compatible processes such as plasma surface treatment/desmear and electroless/electrolytic pulse reverse plating was used. The smallest line width and space demonstrated in this paper is 6mum with microvia diameters in the 15-30mum range. This build-up process has also been developed on medium CTE organic laminates including MCL-E-679F from Hitachi Chemical and PTFE laminates with Cu-Invar-Cu core. Embedded decoupling capacitors with capacitance density of >500nF/cm2 have been integrated into the build-up layers using sol-gel synthesized BaTiO3 thin films (200-300nm film thickness) deposited on copper foils and integrated using vacuum lamination and subtractive etch processes. Thin metal alloy resistor films have been integrated into the SOP substrate using two methods: (a) NiCrAlSi thin films (25ohms per square) deposited on copper foils (Gould Electronics) laminated on the build-up layers and two step etch process for resistor definition, and (b) electroless plated Ni-W-P thin films (70 ohms to few Kohms per square) on the BCB dielectric by plasma surface treatment and activation. The electrical design and build-up layer structure along- - with key materials and processes used in the fabrication of the SOP4 test vehicle were presented in this paper. Initial results from the high density wiring and embedded thin film components were also presented. The focus of this paper is on integration of materials, processes and structures in a single package substrate for system-on-a-package (SOP) implementation
Resumo:
A layer-wise theory with the analysis of face ply independent of lamination is used in the bending of symmetric laminates with anisotropic plies. More realistic and practical edge conditions as in Kirchhoff's theory are considered. An iterative procedure based on point-wise equilibrium equations is adapted. The necessity of a solution of an auxiliary problem in the interior plies is explained and used in the generation of proper sequence of two dimensional problems. Displacements are expanded in terms of polynomials in thickness coordinate such that continuity of transverse stresses across interfaces is assured. Solution of a fourth order system of a supplementary problem in the face ply is necessary to ensure the continuity of in-plane displacements across interfaces and to rectify inadequacies of these polynomial expansions in the interior distribution of approximate solutions. Vertical deflection does not play any role in obtaining all six stress components and two in-plane displacements. In overcoming lacuna in Kirchhoff's theory, widely used first order shear deformation theory and other sixth and higher order theories based on energy principles at laminate level in smeared laminate theories and at ply level in layer-wise theories are not useful in the generation of a proper sequence of 2-D problems converging to 3-D problems. Relevance of present analysis is demonstrated through solutions in a simple text book problem of simply supported square plate under doubly sinusoidal load.
Resumo:
A new high-order refined shear deformation theory based on Reissner's mixed variational principle in conjunction with the state- space concept is used to determine the deflections and stresses for rectangular cross-ply composite plates. A zig-zag shaped function and Legendre polynomials are introduced to approximate the in-plane displacement distributions across the plate thickness. Numerical results are presented with different edge conditions, aspect ratios, lamination schemes and loadings. A comparison with the exact solutions obtained by Pagano and the results by Khdeir indicates that the present theory accurately estimates the in-plane responses.
Resumo:
Atualmente, a utilização do aço inoxidável em elementos estruturais é considerada uma solução cara para os problemas da engenharia estrutural. Todavia, mudanças de atitudes dentro da construção civil, uma transição global para um desenvolvimento sustentável e redução em impactos ambientais têm seguramente provocado um aumento na utilização do aço inoxidável. As normas de projeto de aço inoxidável atuais são, em grande parte, baseadas em analogias assumidas com o comportamento de estruturas desenvolvidas com aço carbono. Todavia, o aço inoxidável apresenta quatro curvas não-lineares tensão versus deformação (tensão e compressão, paralela e perpendicular a laminação do material), sem patamar de escoamento e região de encruamento claramente definidos, modificando assim, o comportamento global das estruturas que o utilizam. Em elementos estruturais submetidos a forças axiais de tração, a ruptura da seção líquida representa um dos estados limites últimos a serem verificados. Com o objetivo de se avaliar a resistência a tração de elementos estruturais aparafusados em aço inoxidável S304, este trabalho apresenta um modelo numérico baseado no método dos elementos finitos através do programa Ansys (versão 11). A não-linearidade do material foi considerada através do critério de plastificação de Von Mises e curvas tensão versus deformação verdadeira. A não-linearidade geométrica foi introduzida no modelo através da Formulação de Lagrange atualizado. O modelo numérico foi calibrado com resultados experimentais obtidos em ensaios de laboratório, a partir de ligações aparafusadas alternadas rígidas, onde não se ocorre nenhuma rotação entre os membros, transferindo nenhum momento fletor, apenas esforço normal e cisalhante.
Resumo:
[ES]En la situación actual, en que las empresas han tenido que automatizar los procesos a nivel mundial para hacer frente a los nuevos retos de la competitividad, pone de manifiesto la necesidad de nuevas tecnologías para innovar y redefinir sus procesos. Este proyecto se centra en la aplicación de las nuevas tecnologías en un proceso de laminación en caliente para así a aumentar la capacidad de producción y la calidad de la empresa. Para ello, en primer lugar, se analiza la planta y el proceso a automatizar, se señalan los problemas y se procede a estudiar la solución más adecuada. Después de seleccionar la solución, se colocan sensores y actuadores a lo largo del proceso en función de los pasos a seguir por la fabricación. Con todo ello se ha diseñado una secuencia de control para que el proceso sea autónomo. Además, se diseña un algoritmo para controlar el arranque de los motores, reduciendo así el consumo de energía. En conclusión, se desea mejorar un viejo proceso de producción a través de la automatización y las nuevas tecnologías. Breve descripción del trabajo (cinco líneas). Esta descripción debe destacar los puntos más relevantes del trabajo: su objetivo principal, los métodos a emplear para su desarrollo y los resultados que se pretenden conseguir, o que se han conseguido.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Laminated sediments are preserved in upper Pleistocene sections of cores collected on the continental slope at water depths within the present oxygen-minimum zone from at least as far north as the Klamath River and as far south as Point Sur. Comparison of sediment components in the laminae with those delivered to sediment traps as pelagic marine "snow" show the dark/light lamination couplets are indeed annual (varves). ... The presence of carbon-, sulfur-, and metal-rich sediments, as well as lack of bioturbation, all support the theory that the oxygen-minimum zone in the northeastern Pacific Ocean was more intense - in fact, anoxic - during the late Pleistocene in response to greater coastal upwelling and higher organic productivity.
Resumo:
SOFT CONTACT LAMINATION; LIGHT-EMITTING DEVICES; LIFT-OFF; FABRICATION; TRANSISTORS; DIODES; FILMS; STAMP
Resumo:
We have developed a special color film with negative birefringence, which can work as a color filter and a viewing angle extension film for liquid crystal displays (LCDs). A high-performance polyimide (PI), which can be dissolved in the usual organic solvent and shows negative birefringence after lamination, was synthesized to fabricate the film. By mixing PI with suitable proportions of green, blue or red pigment in the solvent, then laminating them onto a glass substrate, we obtained color films with good transmission spectra and suitable chromatic coordinates. The results of our experiments show that the color filters still have negative birefringence but a little lower than that of the pure PI film. and can therefore work as compensation films for normal white twist nematic liquid crystal displays (TN-LCD).
Resumo:
Multidisciplinary field investigations were carried out in Okhotsk Sea by R/V Akademik M.A. Lavrentyev (LV) of the Russian Academy of Sciences (RAS) in May 2006, supported by funding agencies from Korea, Russia, Japan and China. Geophysical data including echo-sounder, bottom profile, side-scan-sonar, and gravity core sample were obtained aimed to understand the characteristics and formation mechanism of shallow gas hydrates. Based on the geophysical data, we found that the methane flare detected by echo-sounder was the evidence of free gas in the sediment, while the dome structure detected by side-scan sonar and bottom profile was the root of gas venting. Gas hydrate retrieved from core on top of the dome structure which was interbedded as thin lamination or lenses with thickness varying from a few millimeters to 3 cm. Gas hydrate content in hydrate-bearing intervals visually amounted to 5%-30% of the sediment volume. This paper argued that gases in the sediment core were not all from gas hydrate decomposition during the gravity core lifting process, free gases must existed in the gas hydrate stability zone, and tectonic structure like dome structure in this paper was free gas central, gas hydrate formed only when gases over-saturated in this gas central, away from these structures, gas hydrate could not form due to low gas concentration.
Resumo:
Increasing attentions have been paid to the subsurface geological storage for CO2 in view of the huge storage capacity of subsurface reservoirs. The basic requirement for subsurface CO2 storage is that the CO2 should be sequestrated as supercritical fluids (physical trapping), which may also interact with ambient reservoir rocks and formation waters, forming new minerals (chemical trapping). In order to the effective, durable and safe storage for CO2, enough storage space and stable sealing caprock with strong sealing capacity are necessitated, in an appropriate geological framework. Up till now, hydrocarbon reservoirs are to the most valid and appropriate CO2 storage container, which is well proven as the favorable compartment with huge storage capacity and sealing condition. The thesis focuses on two principal issues related to the storage and sealing capacity of storage compartment for the Qingshankou and Yaojia formations in the Daqingzijing block, Southern Songliao Basin, which was selected as the pilot well site for CO2-EOR storage. In the operation area, three facies, including deltaic plain, deltaic front and subdeep-deep lake facies associations, are recognized, in which 11 subfacies such as subaqueous distributary channel, river- mouth bar, interdistributary bay, sheet sandbody, crevasse splay and overflooding plain are further identified. These subfacies are the basic genetic units in the reservoir and sealing rocks. These facies further comprise the retrogradational and progradational depositional cycles, which were formed base- level rise and fall, respectively. During the regressive or lake lowstand stage, various sands including some turbidites and fans occurred mostly at the bottom of the hinged slope. During the progradation stage, these sands became smaller in size and episodically stepped backwards upon the slope, with greatly expanded and deeped lake. However, most of Cretaceous strata in the study area, localized in the basin centre under this stage, are mainly composed of grey or grizzly siltstones and grey or dark grey mudstones intercalated with minor fine sandstones and purple mudstones. On the base of borehole and core data, these siltstones are widespread, thin from 10 to 50 m thick, good grain sorting, and have relative mature sedimentary structures with graded bedding and cross- lamination or crossbeds such as ripples, which reflect strong hydrodynamic causes. Due to late diagenesis, pores are not widespread in the reservoirs, especially the first member of Qingshankou formation. There are two types of pores: primary pore and secondary cores. The primary pores include intergranular pores and micropores, and the secondary pores include emposieus and fracture pores. Throat channels related to pores is also small and the radius of throat in the first, second and third member of Qingshankou formation is only 0.757 μm, 0.802 μm and 0.631 μm respectively. In addition, based on analyzing the probability plot according to frequency of occurrence of porosity and permeability, they appear single- peaked distribution, which reflects strong hetero- geneity. All these facts indicate that the conditions of physical property of reservoirs are not better. One reason may be provided to interpret this question is that physical property of reservoirs in the study area is strong controlled by the depositional microfacies. From the statistics, the average porosity and permeability of microfacies such as subaqueous distributary channel, channel mouth bar, turbidites, is more than 9 percent and 1md respectively. On the contrary, the average porosity and permeability of microfacies including sand sheet, flagstone and crevasse splay are less than 9 percent and 0.2md respectively. Basically, different hydrodynamic environment under different microfacies can decide different physical property. According to the reservoir models of the first member of Qingshankou formation in the No. well Hei47 block, the character of sedimentary according to the facies models is accord to regional disposition evolution. Meantime, the parameter models of physical property of reservoir indicate that low porosity and low permeability reservoirs widespread widely in the study area, but the sand reservoirs located in the channels are better than other places and they are the main sand reservoirs. The distribution and sealing ability of fault- fractures and caprock are the key aspects to evaluate the stable conditions of compartments to store CO2 in the study area. Based on the core observation, the fractures widespread in the study area, especially around the wells, and most of them are located in the first and second member of Qingshankou formation, almost very few in the third member of Qingshankou formation and Yaojia formation instead. In addition, analyzing the sealing ability of eleven faults in the three-dimensional area in the study area demonstrates that most of faults have strong sealing ability, especially in the No. well Hei56 and Qing90-27. To some extent, the sealing ability of faults in the No. well Hei49, Qing4-6 and Qing84-29 are worse than others. Besides, the deposition environment of most of formations in the study area belongs to moderately deep and deep lake facies, which undoubtedly take advantage to caprocks composed of mudstones widespread and large scale under this deposition environment. In the study area, these mudstones distribute widely in the third member of Qingshankou formation, Yaojia and Nenjiang formation. The effective thickness of mudstone is nearly ~550m on an average with few or simple faults and fractures. In addition, there are many reservoir beds with widely- developed insulated interbeds consist of mudstones or silty mudstone, which can be the valid barrier to CO2 upper movement or leakage through diffusion, dispersion and convection. Above all, the closed thick mud caprock with underdeveloped fractures and reservoir beds can be taken regard as the favorable caprocks to provide stable conditions to avoid CO2 leakage.
Resumo:
Cambrian-Ordovician dolostones in Tarim Basin are hydrocarbon reservoir rocks of vital importance. Under the guidance of the theories of sedimentology and the sedimentology of carbonate reservoir, based on the first-hand qualitative and quantitative data especially, combined with micro-study, geochemical and reservoir capacity analysis, and precursor research, the origin and reservoir characteristics of the dolostones were discussed. Based on detailed petrographic investigations, four types of dolostone have been recognized, which are, respecitively, mud-silt-sized dolostones, algal laminated dolostones (ALD), prophyritic dolostone, and neomorphic dolostone. Mud-silt-sized dolostones always presents as laminas together with evaporated signatures, its REE patterns and ΣREE are all close to that of the finely crystalline limestone. This kind of dolomite probably experienced relatively low fluid-rock ratio during diagenesis was formed in hypersaline and oxidizing environment and involved fast dolomitization process. It was dolomitized by evaporated seawater in sabkha environment.The main primary fabrics of algal lamination in algal laminated dolomite (ALD) can still be identified and its ΣREE (21.37) is very close to that of algae. This reveals that ALD was dolomitized during early diagenesis and algae possibly played an important role. The ALD was formed under mediation of organic matter and Mg2+ were supplied by magnesium concentrated algal laminites and sea water. Prophyritic dolostones presents mainly as patchy occurrence and yield the lowest δ13C and Z value. Its ΣREE is much less than that of the finely crystalline limestone. These characteristics reveal that the cloudy cores were dolomitized in shallow early diagenetic environments by pore fluids riched in Mg2+. Whereas the clear rims were likely formed in subsequent burial into deeper subsurface environments, and the Mg2+ needed for further dolomitization possibly was supplied by the transformations of clay minerals. Neomorphic dolostones consist of coarse, turbid crystals and exhibits sucrosic and mosaic textures. It has highest Fe2+ contents and average homogeneous temperature (110.2℃). Collectively, these characteristics demonstrate that the neomorphic dolostones was likely formed by recrystallization of pre-existing dolomites during deep burial. The ΣREE of the four types of dolostone distinctly differentiates from each other. However, their REE patterns are all enriched in LREE, depleted in HREE and have Eu negative anomalies. Its ΣREE 13.64 ppm, less than 1/4 of finely crystalline limestone, and ranks the lowest in the 4 types.These characteristics are comparable to those of finely crystalline limestone, and are mainly infuenced by the sea water. These four types of dolostone show similar REE mobility behaviour and no significant fractionation, althouth they have been subjected to evidently different diageneses. Seven main pore types are identified in the dolostones , which are fenestral, moldic, intercrystal, dissolved,breccia, dissolved breccia and stylolite pores. Fenestral pores are primary and the others are secondary. The dissolved pores and intercrystal pores are the most important reservoir spaces and followed by breccias and dissolved breccia pores, and the moldic and fenestral pores are less important. Stylolites can enhance permeability of reservoir rocks in one hand, for the other hand, the capacity of reservoir and permeability are enhanced and then better reservoir rocks can be formed when they are combined with patchy dolostones. The relationship between porosity and the type of dolostones is that the dissolved neomorphic dolostones have the highest porosity of 3.65%, than followed by dissolved Mud-silt-sized dolostones of 3.35%. The mud-silt-sized dolostones without dissolution have the lowest porosity of 0.90%. Moreover, the porosity of prophyritic dolostones and the neomorphic dolostones without dissolution are lower, respectively 1.675% and 1.41%. Although algal laminated dolostones consist of euhedral crystals and riched in intercrystal pores, its porosity just yields 1.20%. The relationship between permeability and the type of dolostones is that that algal laminated dolostones have the highest permeability of 0.462mD and followed by 0.065mD of prophyritic dolostones. Dissolution have no significant influence on the permeability of neomorphic dolostones and this presented by the permeability of dissolved and non-dissolved are very close, respectively 0.043mD and 0.062mD. No matter dissolved or not, mud-silt-sized dolostones are much less permeable. The permeability of non-dissolved and dissolved are 0.051mD and 0.016mD. Collectively, in the study area, neomorphic dolostones can form high quality reservoir.
Resumo:
This thesis is focused on the investigation of magnetic materials for high-power dcdc converters in hybrid and fuel cell vehicles and the development of an optimized high-power inductor for a multi-phase converter. The thesis introduces the power system architectures for hybrid and fuel cell vehicles. The requirements for power electronic converters are established and the dc-dc converter topologies of interest are introduced. A compact and efficient inductor is critical to reduce the overall cost, weight and volume of the dc-dc converter and optimize vehicle driving range and traction power. Firstly, materials suitable for a gapped CC-core inductor are analyzed and investigated. A novel inductor-design algorithm is developed and automated in order to compare and contrast the various magnetic materials over a range of frequencies and ripple ratios. The algorithm is developed for foil-wound inductors with gapped CC-cores in the low (10 kHz) to medium (30 kHz) frequency range and investigates the materials in a natural-convection-cooled environment. The practical effects of frequency, ripple, air-gap fringing, and thermal configuration are investigated next for the iron-based amorphous metal and 6.5 % silicon steel materials. A 2.5 kW converter is built to verify the optimum material selection and thermal configuration over the frequency range and ripple ratios of interest. Inductor size can increase in both of these laminated materials due to increased airgap fringing losses. Distributing the airgap is demonstrated to reduce the inductor losses and size but has practical limitations for iron-based amorphous metal cores. The effects of the manufacturing process are shown to degrade the iron-based amorphous metal multi-cut core loss. The experimental results also suggest that gap loss is not a significant consideration in these experiments. The predicted losses by the equation developed by Reuben Lee and cited by Colonel McLyman are significantly higher than the experimental results suggest. Iron-based amorphous metal has better preformance than 6.5 % silicon steel when a single cut core and natural-convection-cooling are used. Conduction cooling, rather than natural convection, can result in the highest power density inductor. The cooling for these laminated materials is very dependent on the direction of the lamination and the component mounting. Experimental results are produced showing the effects of lamination direction on the cooling path. A significant temperature reduction is demonstrated for conduction cooling versus natural-convection cooling. Iron-based amorphous metal and 6.5% silicon steel are competitive materials when conduction cooled. A novel inductor design algorithm is developed for foil-wound inductors with gapped CC-cores for conduction cooling of core and copper. Again, conduction cooling, rather than natural convection, is shown to reduce the size and weight of the inductor. The weight of the 6.5 % silicon steel inductor is reduced by around a factor of ten compared to natural-convection cooling due to the high thermal conductivity of the material. The conduction cooling algorithm is used to develop high-power custom inductors for use in a high power multi-phase boost converter. Finally, a high power digitally-controlled multi-phase boost converter system is designed and constructed to test the high-power inductors. The performance of the inductors is compared to the predictions used in the design process and very good correlation is achieved. The thesis results have been documented at IEEE APEC, PESC and IAS conferences in 2007 and at the IEEE EPE conference in 2008.
Resumo:
The work presented in this thesis described the development of low-cost sensing and separation devices with electrochemical detections for health applications. This research employs macro, micro and nano technology. The first sensing device developed was a tonerbased micro-device. The initial development of microfluidic devices was based on glass or quartz devices that are often expensive to fabricate; however, the introduction of new types of materials, such as plastics, offered a new way for fast prototyping and the development of disposable devices. One such microfluidic device is based on the lamination of laser-printed polyester films using a computer, printer and laminator. The resulting toner-based microchips demonstrated a potential viability for chemical assays, coupled with several detection methods, particularly Chip-Electrophoresis-Chemiluminescence (CE-CL) detection which has never been reported in the literature. Following on from the toner-based microchip, a three-electrode micro-configuration was developed on acetate substrate. This is the first time that a micro-electrode configuration made from gold; silver and platinum have been fabricated onto acetate by means of patterning and deposition techniques using the central fabrication facilities in Tyndall National Institute. These electrodes have been designed to facilitate the integration of a 3- electrode configuration as part of the fabrication process. Since the electrodes are on acetate the dicing step can automatically be eliminated. The stability of these sensors has been investigated using electrochemical techniques with excellent outcomes. Following on from the generalised testing of the electrodes these sensors were then coupled with capillary electrophoresis. The final sensing devices were on a macro scale and involved the modifications of screenprinted electrodes. Screen-printed electrodes (SPE) are generally seen to be far less sensitive than the more expensive electrodes including the gold, boron-doped diamond and glassy carbon electrodes. To enhance the sensitivity of these electrodes they were treated with metal nano-particles, gold and palladium. Following on from this, another modification was introduced. The carbonaceous material carbon monolith was drop-cast onto the SPE and then the metal nano-particles were electrodeposited onto the monolith material
Resumo:
The performance enhancement of AMLCD's has been hindered with problems encountered during the curing process, such as window framing and de-lamination of the glass and adhesive. A thermo-mechanical analysis using FEA was conducted to help optimise the design of the rugged display and enhance the optical performance.