999 resultados para Laminated metals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of increasing demand for potable water and the depletion of water resources, stormwater is a logical alternative. However, stormwater contains pollutants, among which metals are of particular interest due to their toxicity and persistence in the environment. Hence, it is imperative to remove toxic metals in stormwater to the levels prescribed by drinking water guidelines for potable use. Consequently, various techniques have been proposed, among which sorption using low cost sorbents is economically viable and environmentally benign in comparison to other techniques. However, sorbents show affinity towards certain toxic metals, which results in poor removal of other toxic metals. It was hypothesised in this study that a mixture of sorbents that have different metal affinity patterns can be used for the efficient removal of a range of toxic metals commonly found in stormwater. The performance of six sorbents in the sorption of Al, Cr, Cu, Pb, Ni, Zn and Cd, which are the toxic metals commonly found in urban stormwater, was investigated to select suitable sorbents for creating the mixtures. For this purpose, a multi criteria analytical protocol was developed using the decision making methods: PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) and GAIA (Graphical Analysis for Interactive Assistance). Zeolite and seaweed were selected for the creation of trial mixtures based on their metal affinity pattern and the performance on predetermined selection criteria. The metal sorption mechanisms employed by seaweed and zeolite were defined using kinetics, isotherm and thermodynamics parameters, which were determined using the batch sorption experiments. Additionally, the kinetics rate-limiting steps were identified using an innovative approach using GAIA and Spearman correlation techniques developed as part of the study, to overcome the limitation in conventional graphical methods in predicting the degree of contribution of each kinetics step in limiting the overall metal removal rate. The sorption kinetics of zeolite was found to be primarily limited by intraparticle diffusion followed by the sorption reaction steps, which were governed mainly by the hydrated ionic diameter of metals. The isotherm study indicated that the metal sorption mechanism of zeolite was primarily of a physical nature. The thermodynamics study confirmed that the energetically favourable nature of sorption increased in the order of Zn < Cu < Cd < Ni < Pb < Cr < Al, which is in agreement with metal sorption affinity of zeolite. Hence, sorption thermodynamics has an influence on the metal sorption affinity of zeolite. On the other hand, the primary kinetics rate-limiting step of seaweed was the sorption reaction process followed by intraparticle diffusion. The boundary layer diffusion was also found to limit the metal sorption kinetics at low concentration. According to the sorption isotherm study, Cd, Pb, Cr and Al were sorbed by seaweed via ion exchange, whilst sorption of Ni occurred via physisorption. Furthermore, ionic bonding is responsible for the sorption of Zn. The thermodynamics study confirmed that sorption by seaweed was energetically favourable in the order of Zn < Cu < Cd < Cr . Al < Pb < Ni. However, this did not agree with the affinity series derived for seaweed suggesting a limited influence of sorption thermodynamics on metal affinity for seaweed. The investigation of zeolite-seaweed mixtures indicated that mixing sorbents have an effect on the kinetics rates and the sorption affinity. Additionally, the theoretical relationships were derived to predict the boundary layer diffusion rate, intraparticle diffusion rate, the sorption reaction rate and the enthalpy of mixtures based on that of individual sorbents. In general, low coefficient of determination (R2) for the relationships between theoretical and experimental data indicated that the relationships were not statistically significant. This was attributed to the heterogeneity of the properties of sorbents. Nevertheless, in relative terms, the intraparticle diffusion rate, sorption reaction rate and enthalpy of sorption had higher R2 values than the boundary layer diffusion rate suggesting that there was some relationship between the former set of parameters of mixtures and that of sorbents. The mixture, which contained 80% of zeolite and 20% of seaweed, showed similar affinity for the sorption of Cu, Ni, Cd, Cr and Al, which was attributed to approximately similar sorption enthalpy of the metal ions. Therefore, it was concluded that the seaweed-zeolite mixture can be used to obtain the same affinity for various metals present in a multi metal system provided the metal ions have similar enthalpy during sorption by the mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic study and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electro negativity and high charge density of trivalent cation (Cr3+). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stormwater is a potential and readily available alternative source for potable water in urban areas. However, its direct use is severely constrained by the presence of toxic pollutants, such as heavy metals (HMs). The presence of HMs in stormwater is of concern because of their chronic toxicity and persistent nature. In addition to human health impacts, metals can contribute to adverse ecosystem health impact on receiving waters. Therefore, the ability to predict the levels of HMs in stormwater is crucial for monitoring stormwater quality and for the design of effective treatment systems. Unfortunately, the current laboratory methods for determining HM concentrations are resource intensive and time consuming. In this paper, applications of multivariate data analysis techniques are presented to identify potential surrogate parameters which can be used to determine HM concentrations in stormwater. Accordingly, partial least squares was applied to identify a suite of physicochemical parameters which can serve as indicators of HMs. Datasets having varied characteristics, such as land use and particle size distribution of solids, were analyzed to validate the efficacy of the influencing parameters. Iron, manganese, total organic carbon, and inorganic carbon were identified as the predominant parameters that correlate with the HM concentrations. The practical extension of the study outcomes to urban stormwater management is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric deposition is one of the most important pathways of urban stormwater pollution. Atmospheric deposition which can be in the form of either wet or dry deposition have distinct characteristics in terms of associated particulate sizes, pollutant types and influential parameters. This paper discusses the outcomes of a comprehensive research study undertaken to identify important traffic characteristics and climate factors such as antecedent dry period and rainfall characteristics which influences the characteristics of wet and dry deposition of solids and heavy metals. The outcomes confirmed that Zinc (Zn) is correlated with traffic volume whereas Lead (Pb), Cadmium (Cd), Nickel (Ni), and Copper (Cu) are correlated with traffic congestion. Consequently, reducing traffic congestion will be more effective than reducing traffic volume for improving air quality particularly in relation to Pb, Cd, Ni, and Cu. Zn was found to have the highest atmospheric deposition rate compared to other heavy metals. Zn in dry deposition is associated with relatively larger particle size fractions (>10 µm), whereas Pb, Cd, Ni and Cu are associated with relatively smaller particle size fractions (<10 µm). The analysis further revealed that bulk (wet plus dry) deposition which is correlated with rainfall depth and contains a relatively higher percentage of smaller particles compared to dry deposition which is correlated with the antecedent dry period. As particles subjected to wet deposition are smaller, they disperse over a larger area from the source of origin compared to particles subjected to dry deposition as buoyancy forces become dominant for smaller particles compared to the influence of gravity. Furthermore, exhaust emission particles were found to be primarily associated with bulk deposition compared to dry deposition particles which mainly originate from vehicle component wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bi-2212 tapes are prepared by a combination of dip-coating and partial melt processing. We investigate the effect of re-melting of those tapes by partial melting followed by slow cooling on the structure and superconducting properties. Microstructural studies of re-melted samples show that they have the same overall composition as partially melted tapes. However, the fractional volumes of the secondary phases differ and the amounts and distribution of the secondary phases have a significant effect on the critical current. Critical current of Bi-2212/Ag tapes strongly depends on the maximum processing temperature. Initial J(c)'s of the tapes, which are partially melted, then slowly solidified at optimum conditions and finally post-annealed in an inert atmosphere, are up to 10.4 x 10(3) A/cm(2). It is found that the maximum processing temperature at initial partial melting has an influence on the optimum re-heat treatment conditions for the tapes. Re-melted tapes processed at optimum conditions recover superconducting properties after post-annealing in an inert atmosphere: the J(c) values of the tapes are about 80-110% of initial J(c)'s of those tapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superconducting composite Bi-2212/Ag tapes and their joints are fabricated by a combination of dip-coating and partial melt processing. The heat treated tapes have a critical current (Ic) between 8 and 26A, depending on tape thickness and the number of Bi-2212 layers. Current transmissions between 80% and 100% have been achieved through the joints of tapes. Different types of HTS joints of Bi-2212/Ag laminated tapes are made and their transport properties during winding operations are investigated. Irreversible strain values (ε irrev) for laminated tapes and their joints are determined and it is found that the degradation of Ic during tape bending depends on the type of joint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the elements present in house dusts is important in understanding potential health effects on humans. In this study, dust samples collected from 10 houses in south-east Queensland have been analysed by scanning electron microscopy and X-ray microanalysis to measure the inorganic element compositions and to investigate the form of heavy metals in the dusts. The overall analytical results were then used to discriminate between different localities using chemometric techniques. The relative amounts of elements, particularly of Si, Ca, and Fe, varied between size fractions and between different locations for the same size fraction. By analysing individual small particles, many other constituents were identified including Ti, Cr, Mn, Ni, Cu, Zn, Ba, Ag, W, Au, Hg, Pb, Bi, La and Ce. The heavy metals were mostly concentrated in small particles in the smaller size fractions, which allowed detection by particle analysis, though their average concentrations were very low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electro negativity and high charge density of trivalent cation (Cr3+). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates the use of finite element (FE) technique to investigate the behaviour of laminated glass (LG) panels under blast loads. Two and three dimensional (2D and 3D) modelling approaches available in LS-DYNA FE code to model LG panels are presented. Results from the FE analysis for mid-span deflection and principal stresses compared well with those from large deflection plate theory. The FE models are further validated using the results from a free field blast test on a LG panel. It is evident that both 2D and 3D LG models predict the experimental results with reasonable accuracy. The 3D LG models give slightly more accurate results but require considerably more computational time compared to the 2D LG models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a rigorous and a reliable analytical procedure using finite element (FE) techniques to study the blast response of laminated glass (LG) panel and predict the failure of its components. The 1st principal stress (σ11) is used as the failure criterion for glass and the von mises stress (σv) is used for the interlayer and sealant joints. The results from the FE analysis for mid-span deflection, energy absorption and the stresses at critical locations of glass, interlayer and structural sealant are presented in the paper. These results compared well with those obtained from a free field blast test reported in the literature. The tensile strength (T) of the glass has a significant influence on the behaviour of the LG panel and should be treated carefully in the analysis. The glass panes absorb about 80% of the blast energy for the treated blast load and this should be minimised in the design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In particle-strengthened metallic alloys, fatigue damage incubates at inclusion particles near the surface or at the change of geometries. Micromechanical simulation of inclusions such that the fatigue damage incubation mechanisms can be categorized. As micro-plasticity gradient field around different inclusions is different, a novel concept for nonlocal evaluation of micro-plasticity intensity is introduced. The effects of void aspects ration and spatial distributions are quantified for fatigue incubation life in the high-cycle fatigue regime. At last, these effects are integrated based on the statistical facts of inclusions to predict the fatigue life of structural components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediment samples from 13 sampling sites in Deception Bay, Australia were analysed for the presence of heavy metals. Enrichment factors, modified contamination indices and Nemerow pollution indices were calculated for each sampling site to determine sediment quality. The results indicate significant pollution of most sites by lead (average enrichment factor (EF) of 13), but there is also enrichment of arsenic (average EF 2.3), zinc (average EF 2.7) and other heavy metals. The modified degree of contamination indices (average 1.0) suggests that there is little contamination. By contrast, the Nemerow pollution index (average 5.8) suggests that Deception Bay is heavily contaminated. Cluster analysis was undertaken to identify groups of elements. Strong correlation between some elements and two distinct clusters of sampling sites based on sediment type was evident. These results have implications for pollution in complex marine environments where there is significant influx of sand and sediment into an estuarine environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, experimental and numerical investigations have been conducted to explore the possibility of using A0 mode in Lamb waves to detect the position of delamination in carbon fiber reinforced plastic (CFRP) laminated beams. An experimental technique for exciting and sensing the pure A0 mode has been developed. By measuring the propagation speed of A0 mode and traveling time of a signal reflected from the delamination, its location can be identified experimentally and numerically. Moreover, the numerical analysis has been extended to gain a better understanding of the complex interaction between A0 mode and a long delamination case.