978 resultados para Lagrangian Grassmannian
Resumo:
We study the Becchi-Rouet-Stora-Tyutin (BRST) structure of a self-interacting antisymmetric tensor gauge field, which has an on-shell null-vector gauge transformation. The Batalin-Vilkovisky covariant general formalism is briefly reviewed, and the issue of on-shell nilpotency of the BRST transformation is elucidated. We establish the connection between the covariant and the canonical BRST formalisms for our particular theory. Finally, we point out the similarities and differences with Wittens string field theory.
Resumo:
We study the Hamiltonian and Lagrangian constraints of the Polyakov string. The gauge fixing at the Hamiltonian and Lagrangian level is also studied.
Resumo:
The equivalence between the Lagrangian and Hamiltonian formalism is studied for constraint systems. A procedure to construct the Lagrangian constraints from the Hamiltonian constraints is given. Those Hamiltonian constraints that are first class with respect to the Hamiltonian constraints produce Lagrangian constraints that are FL-projectable.
Resumo:
In order to study the connections between Lagrangian and Hamiltonian formalisms constructed from aperhaps singularhigher-order Lagrangian, some geometric structures are constructed. Intermediate spaces between those of Lagrangian and Hamiltonian formalisms, partial Ostrogradskiis transformations and unambiguous evolution operators connecting these spaces are intrinsically defined, and some of their properties studied. Equations of motion, constraints, and arbitrary functions of Lagrangian and Hamiltonian formalisms are thoroughly studied. In particular, all the Lagrangian constraints are obtained from the Hamiltonian ones. Once the gauge transformations are taken into account, the true number of degrees of freedom is obtained, both in the Lagrangian and Hamiltonian formalisms, and also in all the intermediate formalisms herein defined.
Resumo:
A Lagrangian treatment of the quantization of first class Hamiltonian systems with constraints and Hamiltonian linear and quadratic in the momenta, respectively, is performed. The first reduce and then quantize and the first quantize and then reduce (Diracs) methods are compared. A source of ambiguities in this latter approach is pointed out and its relevance on issues concerning self-consistency and equivalence with the first reduce method is emphasized. One of the main results is the relation between the propagator obtained la Dirac and the propagator in the full space. As an application of the formalism developed, quantization on coset spaces of compact Lie groups is presented. In this case it is shown that a natural selection of a Dirac quantization allows for full self-consistency and equivalence. Finally, the specific case of the propagator on a two-dimensional sphere S2 viewed as the coset space SU(2)/U(1) is worked out. 1995 American Institute of Physics.
Resumo:
In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.
Resumo:
The RuskSkinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations. 2004 American Institute of Physics.
Resumo:
We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei.
Resumo:
Unlike the 1/c2 approximation, where classical electrodynamics is described by the Darwin Lagrangian, here there is no Lagrangian to describe retarded (resp., advanced) classical electrodynamics up to 1/c3 for two-point charges with different masses.
Resumo:
This work presents a formulation of the contact with friction between elastic bodies. This is a non linear problem due to unilateral constraints (inter-penetration of bodies) and friction. The solution of this problem can be found using optimization concepts, modelling the problem as a constrained minimization problem. The Finite Element Method is used to construct approximation spaces. The minimization problem has the total potential energy of the elastic bodies as the objective function, the non-inter-penetration conditions are represented by inequality constraints, and equality constraints are used to deal with the friction. Due to the presence of two friction conditions (stick and slip), specific equality constraints are present or not according to the current condition. Since the Coulomb friction condition depends on the normal and tangential contact stresses related to the constraints of the problem, it is devised a conditional dependent constrained minimization problem. An Augmented Lagrangian Method for constrained minimization is employed to solve this problem. This method, when applied to a contact problem, presents Lagrange Multipliers which have the physical meaning of contact forces. This fact allows to check the friction condition at each iteration. These concepts make possible to devise a computational scheme which lead to good numerical results.
Resumo:
Some properties of generalized canonical systems - special dynamical systems described by a Hamiltonian function linear in the adjoint variables - are applied in determining the solution of the two-dimensional coast-arc problem in an inverse-square gravity field. A complete closed-form solution for Lagrangian multipliers - adjoint variables - is obtained by means of such properties for elliptic, circular, parabolic and hyperbolic motions. Classic orbital elements are taken as constants of integration of this solution in the case of elliptic, parabolic and hyperbolic motions. For circular motion, a set of nonsingular orbital elements is introduced as constants of integration in order to eliminate the singularity of the solution.
Resumo:
La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques.
Resumo:
Dans cette thèse, on étudie les propriétés des sous-variétés lagrangiennes dans une variété symplectique en utilisant la relation de cobordisme lagrangien. Plus précisément, on s'intéresse à déterminer les conditions pour lesquelles les cobordismes lagrangiens élémentaires sont en fait triviaux. En utilisant des techniques de l'homologie de Floer et le théorème du s-cobordisme on démontre que, sous certaines hypothèses topologiques, un cobordisme lagrangien exact est une pseudo-isotopie lagrangienne. Ce resultat est une forme faible d'une conjecture due à Biran et Cornea qui stipule qu'un cobordisme lagrangien exact est hamiltonien isotope à une suspension lagrangianenne.
Resumo:
Isotopic and isotonic chains of superheavy nuclei are analyzed to search for spherical double shell closures beyond Z=82 and N=126 within the new effective field theory model of Furnstahl, Serot, and Tang for the relativistic nuclear many-body problem. We take into account several indicators to identify the occurrence of possible shell closures, such as two-nucleon separation energies, two-nucleon shell gaps, average pairing gaps, and the shell correction energy. The effective Lagrangian model predicts N=172 and Z=120 and N=258 and Z=120 as spherical doubly magic superheavy nuclei, whereas N=184 and Z=114 show some magic character depending on the parameter set. The magicity of a particular neutron (proton) number in the analyzed mass region is found to depend on the number of protons (neutrons) present in the nucleus.