666 resultados para Lactobacillus crispatus EM-LC1
Resumo:
Lactobacillus reuteri BR11 possesses an abundant cystine uptake (Cyu) ABC-transporter that was previously found to be involved in a novel mechanism of oxidative defence mediated by cystine. The current study aimed to elucidate this mechanism with a focus on the role of the co-transcribed cystathionine ã-lyase (Cgl). Growth studies of wild-type L. reuteri BR11 and mutants inactivated in cgl and the cystine-binding protein encoding gene cyuC showed that in contrast to the Cyu transporter, whose inactivation led to growth arrest in aerated cultures, Cgl is not crucial for oxidative defence. However, the role of Cgl in oxidative defence became apparent in the presence of severe oxidative damage and cysteine deprivation. Cysteine was found to be protective against oxidative stress, and the action of Cgl in both cysteine biosynthesis and degradation poses a seemingly futile pathway that deprives the intracellular cysteine pool. To further characterise the relationship between Cgl activity and cysteine and their roles in oxidative defence, enzymatic assays were performed on purified Cgl, and intracellular concentrations of cysteine, cystathionine and methionine were determined. Cgl was highly active towards cystine and cystathionine and less active towards cysteine in vitro, suggesting the main function of Cgl to be cysteine biosynthesis. Cysteine was found at high concentrations in the cell, but the levels were not significantly affected by inactivation of cgl or growth under aerobic conditions. It was concluded that both anabolic and catabolic activities of Cgl towards cysteine contribute to oxidative defence, the former by maintaining an intracellular reservoir of thiol analogous to glutathione, and the latter by producing H2S which is readily secreted, thus creating a reducing extracellular environment. The significance of the Cyu transporter to the physiology of L. reuteri BR11 prompted a phylogenetic study to determine its presence in bacteria. Orthologs of the Cyu transporter that are closest matches to the Cyu transporter are only limited to several species of Lactobacillus and Leuconostoc. Outside the Lactobacillales order, the closest matching orthologs belong to Proteobacteria, and there are more orthologs in Proteobacteria than non-Lactobacillales Firmicutes, suggesting that the Cyu transporter locus was present in the ancestor of the Proteobacteria and Firmicutes, and over evolutionary time has been lost or diverged in many Firmicutes. The clustering of the Cyu transporter locus with a gene encoding a Cgl family protein is even rarer. It was only found in L. reuteri, Lactobacillus vaginalis, Weissella paramesenteroides, the Lactobacillus casei group, and several Campylobacter sp. An accompanying phylogenetic study of L. reuteri BR11 using multi-locus sequence analysis showed that L. reuteri BR11 had diverged from more than 100 strains of L. reuteri isolated from various hosts and geographical locations. However, comparison with other Lactobacillus species supported the current classification of BR11 as L. reuteri. The most closely related species to L. reuteri is L. vaginalis or Lactobacillus antri, depending on the housekeeping gene used for analysis. The close evolutionary relationship of L. vaginalis to L. reuteri and the high degree of sequence identity between the cgl-cyuABC loci in both species suggest that the Cyu system is highly likely to perform similar functions in L. vaginalis. In search of other genes that function in oxidative defence, a number of mutants which were inactivated in genes that confer increased resistance to oxidative stress in other bacteria were constructed. The genes targeted were ahpC (peroxidase component of the alkyl hydroperoxide reductase system), tpx (thiol peroxidase), osmC (osmotically induced protein C), mntH (Mn2+/Fe2+ transporter), gshA (ã-glutamylcysteine synthetase) and msrA (methionine sulfoxide reductase). The ahpC and mntH mutants had slightly lower minimum inhibitory concentrations of organic peroxides, suggesting these genes might be involved in resistance to organic peroxides in L. reuteri. However, none of the mutants exhibited growth defects in aerated cultures, in stark contrast to the cyuC mutant. This may be due to compensatory functions of other genes, a hypothesis which cannot be tested until a robust protocol for constructing markerless multiple gene deletion mutants in L. reuteri is developed. These results highlight the importance of the Cyu transporter in oxidative defence and provide a foundation for extending the research of this system in other bacteria.
Resumo:
The purpose of the present study was to evaluate the effects of Lactobacillus helveticus fermented milk (peptide milk) containing the casein-derived tripeptides Isoleucyl-prolyl-proline (Ile-Pro-Pro) and Valyl-prolyl-proline (Val-Pro-Pro) on blood pressure and vascular function in hypertensive subjects. The peptide milk lowered systolic and diastolic blood pressure in long-term use in hypertensive subjects when blood pressure was measured by using 24-hour ambulatory blood pressure measurement (ABPM). The blood pressure lowering effect was seen with the dose of 50 mg of tripeptides, and a tendency for lowering blood pressure was also observed when the dose was 5 mg. No adverse effects compared to the placebo group were reported or detected in laboratory analysis. The effect of the peptide milk on arterial stiffness was shown using two different methods, the ambulatory arterial stiffness index (AASI) and pulse wave analysis (PWA). According to the AASI, arterial stiffness was significantly reduced in the peptide milk group compared to the baseline level, but the difference was not significant compared to the placebo group. PWA showed that the peptide milk reduced arterial stiffness significantly compared to the placebo group. Endothelium-independent relaxation (nitroglycerin) and endothelium-dependent relaxation (salbutamol) did not differ between the groups. The blood pressure lowering mechanisms of the tripeptides and the kinetics of Ile-Pro-Pro were investigated using spontaneously hypertensive rats (SHR) and Sprague-Dawley rats. Previous studies have suggested that the blood pressure lowering effect of the tripeptides Ile-Pro-Pro and Val-Pro-Pro is based on angiotensin-converting enzyme inhibition, but the present findings did not agree with these previous studies. It was shown in SHR that calcium, potassium and magnesium may also have an important role in attenuating the development of hypertension as part of the peptide milk effect. In addition, the present study suggests indirectly that improved endothelial nitric oxide release capacity is not the mechanism by which peptide milk mediates its favourable circulatory effects. The kinetics of Ile-Pro-Pro were studied using adult Sprague-Dawley rats. The results showed that orally administered Ile-Pro-Pro is absorbed at least partly intact from the gastrointestinal tract. Radiolabelled Ile-Pro-Pro was distributed in different tissues and considerable radioactivity levels were found in tissues related to the renin-angiotensin system (RAS), adrenals, aorta and kidneys. Ile-Pro-Pro does not bind to plasma proteins, and therefore it is possible that its blood pressure lowering effect is mediated by free Ile-Pro-Pro. In conclusion, consumption of the peptide milk lowers blood pressure and reduces arterial stiffness in hypertensive subjects. Ile-Pro-Pro can be absorbed partly intact from the gastrointestinal tract and might accumulate in tissues related to the RAS. The precise blood pressure lowering mechanism of peptide milk remains to be studied.
Resumo:
Yogurt consumption has been related to longevity of some populations living on the Balkans. Yogurt starter L. delbrueckii subsp. bulgaricus and Str. thermophilus have been recognized as probiotics with verified beneficial health effects. The oral cavity emerges as a arget for probiotic applications. Probiotics have demonstrated promising results in controlling dental diseases and oral yeast infections. However, L. bulgaricus despite its broad availability in dairy products has not been evaluated for probiotic activity in the mouth. These series of studies investigated in vitro properties of L. bulgaricus to outline its potential as an oral probiotic. Prerequisite probiotic properties in the mouth are resistance to oral defense mechanisms, adherence to saliva-coated surfaces, and inhibition of oral pathogens. L. bulgaricus strains showed a strain-dependent inhibition of oral streptococci and Aggregatibacter actinomycetemcomitans, whereas none of the dairy starter strains could affect growth of Porphyromonas gingivalis and Fusobacterium nucleatum. Adhesion is a factor contributing to colonization of the species at the target site. Radiolabeled L. bulgaricus strains and L. rhamnosus GG were tested for their ability to adhere to saliva-coated surfaces. The effects of lysozyme on adhesion and adhesion of Streptococcus sanguinis after lactobacilli pretreatment were also assessed. Adhesion of L. bulgaricus remained lower in comparison to L. rhamnosus GG. One L. bulgaricus strain showed binding frequency comparable to S. sanguinis. Lysozyme pretreatment significantly increased Lactobacillus adhesion. Low gelatinolytic activity was observed for all strains and no conversion of proMMP-9 to its active form was induced by L. bulgaricus. Safety assessment ruled out deleterious effects of L. bulgaricus on extracellular matrix structures. Cytokine response of oral epithelial cells was assessed by measuring IL-8 and TNF-α in cell culture supernatants. The effect of P. gingivalis on cytokine secretion after lactobacilli pretreatment was also assessed. A strain- and time-dependent induction of IL-8 was observed with live bacteria inducing the highest levels of cytokine secretion. Levels of TNF-α were low and only one of ten L. bulgaricus strains stimulated TNF-α secretion similar to positive control. The addition of P. gingivalis produced immediate reduction of cytokine levels within the first hours of incubation irrespective of lactobacilli strains co-cultured with epithelial cells. According to these studies strains among the L. delbrueckii subsp. bulgaricus species may have beneficial probiotic properties in the mouth. Their potential in prevention and management of common oral infectious diseases needs to be further studied.
Resumo:
Bacteriocin-producing lactic acid bacteria and their isolated peptide bacteriocins are of value to control pathogens and spoiling microorganisms in foods and feed. Nisin is the only bacteriocin that is commonly accepted as a food preservative and has a broad spectrum of activity against Gram-positive organisms including spore forming bacteria. In this study nisin induction was studied from two perspectives, induction from inside of the cell and selection of nisin inducible strains with increased nisin induction sensitivity. The results showed that a mutation in the nisin precursor transporter NisT rendered L. lactis incapable of nisin secretion and lead to nisin accumulation inside the cells. Intracellular proteolytic activity could cleave the N-terminal leader peptide of nisin precursor, resulting in active nisin in the cells. Using a nisin sensitive GFP bioassay it could be shown, that the active intracellular nisin could function as an inducer without any detectable release from the cells. The results suggested that nisin can be inserted into the cytoplasmic membrane from inside the cell and activate NisK. This model of two-component regulation may be a general mechanism of how amphiphilic signals activate the histidine kinase sensor and would represent a novel way for a signal transduction pathway to recognize its signal. In addition, nisin induction was studied through the isolation of natural mutants of the GFPuv nisin bioassay strain L. lactis LAC275 using fl uorescence-activated cell sorting (FACS). The isolated mutant strains represent second generation of GFPuv bioassay strains which can allow the detection of nisin at lower levels. The applied aspect of this thesis was focused on the potential of bacteriocins in chicken farming. One aim was to study nisin as a potential growth promoter in chicken feed. Therefore, the lactic acid bacteria of chicken crop and the nisin sensitivity of the isolated strains were tested. It was found that in the crop Lactobacillus reuteri, L. salivarius and L. crispatus were the dominating bacteria and variation in nisin resistance level of these strains was found. This suggested that nisin may be used as growth promoter without wiping out the dominating bacterial species in the crop. As the isolated lactobacilli may serve as bacteria promoting chicken health or reducing zoonoosis and bacteriocin production is one property associated with probiotics, the isolated strains were screened for bacteriocin activity against the pathogen Campylobacter jejuni. The results showed that many of the isolated L. salivarius strains could inhibit the growth of C. jejuni. The bacteriocin of the L. salivarius LAB47 strain, with the strongest activity, was further characterized. Salivaricin 47 is heat-stable and active in pH range 3 to 8, and the molecular mass was estimated to be approximately 3.2 kDa based on tricine SDS-PAGE analysis.
Resumo:
Lactobacilli are gram positive rods, which belong to normal oropharyngeal, gastrointestinal and urogenital flora. They are widely used in food industry and as food additives. Although their virulence is presumed to be very low, opportunistic bacteremic infections, especially in immunocompromised hosts, have been detected. In the present study, the possible effects of increasing probiotic use of Lactobacillus rhamnosus GG (LGG) on the occurrence of bacteremia due to lactobacilli was evaluated on population level. In Finland, 90 Lactobacillus bacteremia cases were reported to the National Infectious Disease Register maintained by National Public Health Institute, during 1995-2000. Their proportion of all bacteremia cases was on average 0.24%, corresponding to 0.3 cases/100 000 inhabitants annually. In the Helsinki University Central Hospital district the corresponding proportion of all bacteremia cases was observed during 1990-2000. Despite LGG intake increased six folded no increasing trend in the occurrence of lactobacilli bacteremia was seen. A total of 85 Lactobacillus sp. blood isolates collected from different human bacteremic cases were characterised and compared with the commercial probiotic LGG strain. In species characterisation 46 L. rhamnosus strains, 12 L. fermentum and L. casei strains each, three each of L. gasseri, L. salivarius and L. jensenii species, two L. curvatus, and one each of L. plantarum, L. sakei, L. zeae and L. reuteri species were detected. Nearly half of the L. rhamnosus findings turned out to be indistinguishable from the probiotic LGG strain. Common predisposing factors to Lactobacillus bacteremia were immunosuppression, prior prolonged hospitalisation and prior surgical interventions. Severe or fatal comorbidities were found in 82% of the patients. Mortality at one month was 26% and severe underlying diseases were a significant predictor of death (OR 15.8). Antimicrobial susceptibility of Lactobacillus strains was species dependent. The Lactobacillus isolates were generally susceptible to imipenem, piperacillin-tazobactam, clindamycin and erythromycin, whereas all other than L. gasseri and L. jensenii species were not at all susceptible to vancomycin. The susceptibility to cephalosporin varied greatly even within species why they might not be recommended for treatment of Lactobacillus infections. The effect and safety of probiotic LGG preparation in amelioration of gastric symptoms and diarrhea in HIV-infected patients was evaluated. No significant differences in gastrointestinal symptoms or diarrhoea in LGG treated patients compared to placebo could be found. LGG was well tolerated with no adverse effects including bacteremic outbreaks could be observed. The use of probiotic LGG can be regarded safe in this immunocompromised patient group.
Resumo:
Lactobacillus rhamnosus GG is a probiotic bacterium that is known worldwide. Since its discovery in 1985, the health effects and biology of this health-promoting strain have been researched at an increasing rate. However, knowledge of the molecular biology responsible for these health effects is limited, even though research in this area has continued to grow since the publication of the whole genome sequence of L. rhamnosus GG in 2009. In this thesis, the molecular biology of L. rhamnosus GG was explored by mapping the changes in protein levels in response to diverse stress factors and environmental conditions. The proteomics data were supplemented with transcriptome level mapping of gene expression. The harsh conditions of the gastro-intestinal tract, which involve acidic conditions and detergent-like bile acids, are a notable challenge to the survival of probiotic bacteria. To simulate these conditions, L. rhamnosus GG was exposed to a sudden bile stress, and several stress response mechanisms were revealed, among others various changes in the cell envelope properties. L. rhamnosus GG also responded in various ways to mild acid stress, which probiotic bacteria may face in dairy fermentations and product formulations. The acid stress response of L. rhamnosus GG included changes in central metabolism and specific responses related to the control of intracellular pH. Altogether, L. rhamnosus GG was shown to possess a large repertoire of mechanisms for responding to stress conditions, which is a beneficial character of a probiotic organism. Adaptation to different growth conditions was studied by comparing the proteome level responses of L. rhamnosus GG to divergent growth media and to different phases of growth. Comparing different growth phases revealed that the metabolism of L. rhamnosus GG is modified markedly during shift from the exponential to the stationary phase of growth. These changes were seen both at proteome and transcriptome levels and in various different cellular functions. When the growth of L. rhamnosus GG in a rich laboratory medium and in an industrial whey-based medium was compared, various differences in metabolism and in factors affecting the cell surface properties could be seen. These results led us to recommend that the industrial-type media should be used in laboratory studies of L. rhamnosus GG and other probiotic bacteria to achieve a similar physiological state for the bacteria as that found in industrial products, which would thus yield more relevant information about the bacteria. In addition, an interesting phenomenon of protein phosphorylation was observed in L. rhamnosus GG. Phosphorylation of several proteins of L. rhamnosus GG was detected, and there were hints that the degree of phosphorylation may be dependent on the growth pH.
Resumo:
The encapsulation of probiotic Lactobacillus acidophilus through layer-by-layer self-assembly of polyelectrolytes (PE) chitosan (CHI) and carboxymethyl cellulose (CMC) has been investigated,to enhance its survival m adverse conditions encountered in the GI tract The survival of encapsulated cells in simulated gastric (SGF) and intestinal fluids (SIF) is significant when compared to nonencapsulated cells On sequential exposure to SGF and SIF fox 120 nun, almost complete death of free cells is observed However, for cells coated with three nanolayers of PEs (CHI/CMC/CHI) about 33 log % of the cells (6 log cfu/500 mg) survived under the same conditions The enhanced survival rate of encapsulated L acidophilus can be attributed to the impermeability of polyelectrolyte nanolayers to large enzyme molecules like pepsin, and pancreatin that cause proteolysis and to the stability of the polyelectrolyte nanolayers in gastric and intestinal pH The PE coating also serves to reduce viability losses during freezing and freeze- drying About 73 and 92 log % of uncoated and coated cells survived after freeze:drying, and the losses occurring between freezing and freeze-drying were found to be lower for coated cells
Resumo:
The influence of a fish gut bacterium Lactobacillus sp on the production of swordtail Xiphophorus helleri was studied for a period of one year. The Lactobacillus sp P21 produced bacteriocin-like inhibitory substance and exhibited wide spectrum of action against Aeromonas hydrophila, Bacillus spp, Pseudomonas spp and Citrobacter freundi in vitro. The growth performance of X. helleri reared in the presence of Lactobacillus P21 at 106/ml rearing water was better than the control. The total plate counts, total MRS agar counts and the counts of motile aeromonads, presumptive pseudomonads, lactose fermenters and lactose non-fermenters in the gut of probiotic group were comparatively low than the control. On day 60 the count of Lactobacillus sp P21 was observed to be log 5.28/g in the gut of X. helleri indicating colonization of this bacterium in the gastrointestinal tract. The fecundity of X. helleri was in the range of 9-134. On average, it produced from 39.42±18.72 fry/female in control group to 53.00±23.57 fry/female in probiotic group. The increase in average fecundity in probiotic group over the control group was about 25%. There existed significant difference between probiotic group and control in respect of average fecundity/female (p<0.02), average number of fry survived /female (p<0.006) and average number of fry dead/female (p<0.029). The results of the present study demonstrated that the rearing of X. helleri in probiotic-enriched water have growth inducing ability and favourably influenced the reproductive performance in terms of high fecundity, high fry survival, reduced fry mortality and reduced fry deformity.
Resumo:
An attempt was made to feed bioencapsulate Lactobacillus sp. in live fish food organism Tubifex for use in the culture of gold fish Carassius auratus. The C. auratus fries when fed with bioencapsulated Lactobacillus sp. in Tubifex showed significant improvement in total wet weight gain (p<0.007) and FCR (p<0.01) compared to control. The specific growth rale and mean survival were slightly higher, although insignificantly (p>0.05) in bioencapsulated Tubifex fed group. None of the bacteriological parameters of the fish gut between the experimental and control groups differed significantly (p>0.05). Lactobacillus sp. was recorded at a level of log 5.11/g on the 90th day of experimentation. When the experimental C. auratus fries were infected with Pseudomonas fluorescents, the bioencapsulated Tubifex fed group resisted the infection. The survival was significantly higher (p<0.05) in bioencapsulated Tubifex fed group (44%) than in control (22%). The C. auratus fed with bioencapsulated Tubifex showed less (55%) signs of tail/fin rot. Likewise, a significant improvement in total wet weight gain (p<0.009), FCR (p<0.01) and SGR (p<0.04) of C. auratus brooder fed with bioencapsulated Tubifex was seen compared to control group fed with depurated Tubifex.
Resumo:
The application of sourdough can improve texture, structure, nutritional value, staling rate and shelf life of wheat and gluten-free breads. These quality improvements are associated with the formation of organic acids, exopolysaccharides (EPS), aroma or antifungal compounds. Initially, the suitability of two lactic acid bacteria strains to serve as sourdough starters for buckwheat, oat, quinoa, sorghum and flours was investigated. Wheat flour was chosen as a reference. The obligate heterofermentative lactic acid bacterium (LAB) Weissella cibaria MG1 (Wc) formed the EPS dextran (a α-1,6-glucan) from sucrose in situ with a molecular size of 106 to 107 kDa. EPS formation in all breads was analysed using size exclusion chromatography and highest amounts were formed in buckwheat (4 g/ kg) and quinoa sourdough (3 g/ kg). The facultative heterofermentative Lactobacillus plantarum FST1.7 (Lp) was identified as strong acidifier and was chosen due to its ubiquitous presence in gluten-free as well as wheat sourdoughs (Vogelmann et al. 2009). Both Wc and Lp, showed highest total titratable acids in buckwheat (16.8 ml; 26.0 ml), teff (16.2 ml; 24.5 ml) and quinoa sourdoughs (26.4 ml; 35.3 ml) correlating with higher amounts of fermentable sugars and higher buffering capacities. Sourdough incorporation reduced the crumb hardness after five days of storage in buckwheat (Wc -111%), teff (Wc -39%) and wheat (Wc -206%; Lp -118%) sourdough breads. The rate of staling (N/ day) was reduced in buckwheat (Ctrl 8 N; Wc 3 N; Lp 6 N), teff (Ctrl 13 N; Wc 9 N; Lp 10 N) and wheat (Ctrl 5 N; Wc 1 N; Lp 2 N) sourdough breads. Bread dough softening upon Wc and Lp sourdough incorporation accounted for increased crumb porosity in buckwheat (+10.4%; +4.7), teff (+8.1%; +8.3%) and wheat sourdough breads (+8.7%; +6.4%). Weissella cibaria MG1 sourdough improved the aroma quality of wheat bread but had no impact on aroma of gluten-free breads. Microbial shelf life however, was not prolonged in any of the breads regardless of the starter culture used. Due to the high prevalence of insulin-dependent diabetes mellitus particular amongst coeliac patients, glycaemic control is of great (Berti et al. 2004). The in vitro starch digestibility of gluten-free breads with and without sourdough addition was analysed to predict the GI (pGI). Sourdough can decrease starch hydrolysis in vitro, due to formation of resistant starch and organic acids. Predicted GI of gluten-free control breads were significantly lower than for the reference white wheat bread (GI=100). Starch granule size was investigated with scanning electron microscopy and was significantly smaller in quinoa flour (<2 μm). This resulted in higher enzymatic susceptibility and hence higher pGI for quinoa bread (95). Lowest hydrolysis indexes for sorghum and teff control breads (72 and 74, respectively) correlate with higher gelatinisation peak temperatures (69°C and 71°C, respectively). Levels of resistant starch were not increased by addition of Weissella cibaria MG1 (weak acidifier) or Lactobacillus plantarum FST1.7 (strong acidifier). The pGI was significantly decreased for both wheat sourdough breads (Wc 85; Lp 76). Lactic acid can promote starch interactions with gluten hence decreasing starch susceptibility (Östman et al. 2002). For most gluten-free breads, the pGI was increased upon sourdough addition. Only sorghum and teff Lp sourdough breads (69 and 68, respectively) had significantly decreased pGI. Results suggest that the increase of starch hydrolysis in gluten-free breads was related to mechanism other than presence of organic acids and formation of resistant starch.
Resumo:
Despite increased application of commensal bacteria for attempting to improve the symptoms of a variety of inflammatory conditions, including inflammatory bowel diseases, diarrhoea and irritable bowel syndrome, therapeutic approaches that involve live bacteria are hampered by a limited understanding of bacterium-host interactions. Lactobacilli are natural inhabitants of the mammalian gastrointestinal tract and many lactobacilli are regarded as probiotics meaning that they exert a beneficial influence on the health status of their consumers. Modulation of immune responses is a plausible mechanism underlying these beneficial effects. The aim of this thesis was to investigate the effect of 33 Lactobacillus salivarius strains on the production of inflammatory cytokines from a variety of human and mouse immune cells. Induction of immune responses in vitro was shown to be bacterial- and mouse strain-dependent, cell type-dependent, blood donor-dependent and bacterial cell number-dependent. Collectively, these data suggest the importance of a case-by-case selection of candidate strains for their potential therapeutic application. Toll-like receptors (TLRs) recognize microbe-associated molecular patterns (MAMPs) and play a critical role in shaping microbial-specific innate and adaptive immune responses. Following ligand engagement, TLRs trigger a complex network of signalling that culminate in the production of inflammatory mediators. The investigation of the molecular mechanisms underlying the Lb. salivarius-host interaction resulted in the identification of a novel role for TLR2 in negatively regulating TLR4 signalling originated from subcellular compartments within macrophages. Notably, sustained activation of JAK/STAT cascade and M1-signature genes in TLR2-/- macrophages was ablated by selective TLR4 and JAK inhibitors and by absence of TLR4 in TLR2/4-/- cells. In addition, other negative regulators of TLR signalling triggered by Lb. salivarius strains were found to be the adapter molecules TIRAP and TRIF. Understanding negative regulation of TLR signalling may pave the way for the development of novel therapeutics to limit inflammation in multiple diseases.