874 resultados para LYAPUNOV FUNCTIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global attractor of a gradient-like semigroup has a Morse decomposition. Associated to this Morse decomposition there is a Lyapunov function (differentiable along solutions)-defined on the whole phase space- which proves relevant information on the structure of the attractor. In this paper we prove the continuity of these Lyapunov functions under perturbation. On the other hand, the attractor of a gradient-like semigroup also has an energy level decomposition which is again a Morse decomposition but with a total order between any two components. We claim that, from a dynamical point of view, this is the optimal decomposition of a global attractor; that is, if we start from the finest Morse decomposition, the energy level decomposition is the coarsest Morse decomposition that still produces a Lyapunov function which gives the same information about the structure of the attractor. We also establish sufficient conditions which ensure the stability of this kind of decomposition under perturbation. In particular, if connections between different isolated invariant sets inside the attractor remain under perturbation, we show the continuity of the energy level Morse decomposition. The class of Morse-Smale systems illustrates our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stability of nonlinear impulsive differential equations with "supremum" is studied. A special type of stability, combining two different measures and a dot product on a cone, is defined. Perturbing cone-valued piecewise continuous Lyapunov functions have been applied. Method of Razumikhin as well as comparison method for scalar impulsive ordinary differential equations have been employed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, sufficient conditions for the existence of switching laws for stabilizing switched TS fuzzy systems via a fuzzy Lyapunov function are proposed. The conditions are found by exploring properties of the membership functions and are formulated in terms of linear matrix inequalities (LMIs). Stabilizing switching conditions with bounds on the decay rate solution and H1 performance are also obtained. Numerical examples illustrate the effectiveness of the proposed design methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A cascaded DC-DC boost converter is one of the ways to integrate hybrid battery types within a grid-tie inverter. Due to the presence of different battery parameters within the system such as, state-of-charge and/or capacity, a module based distributed power sharing strategy may be used. To implement this sharing strategy, the desired control reference for each module voltage/current control loop needs to be dynamically varied according to these battery parameters. This can cause stability problem within the cascaded converters due to relative battery parameter variations when using the conventional PI control approach. This paper proposes a new control method based on Lyapunov Functions to eliminate this issue. The proposed solution provides a global asymptotic stability at a module level avoiding any instability issue due to parameter variations. A detailed analysis and design of the nonlinear control structure are presented under the distributed sharing control. At last thorough experimental investigations are shown to prove the effectiveness of the proposed control under grid-tie conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address robust stabilization problem for networked control systems with nonlinear uncertainties and packet losses by modelling such systems as a class of uncertain switched systems. Based on theories on switched Lyapunov functions, we derive the robustly stabilizing conditions for state feedback stabilization and design packet-loss dependent controllers by solving some matrix inequalities. A numerical example and some simulations are worked out to demonstrate the effectiveness of the proposed design method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho apresentamos as etapas para a utilização do método da Programação Dinâmica, ou Princípio de Otimização de Bellman, para aplicações de controle ótimo. Investigamos a noção de funções de controle de Lyapunov (FCL) e sua relação com a estabilidade de sistemas autônomos com controle. Uma função de controle de Lyapunov deverá satisfazer a equação de Hamilton-Jacobi-Bellman (H-J-B). Usando esse fato, se uma função de controle de Lyapunov é conhecida, será então possível determinar a lei de realimentação ótima; isto é, a lei de controle que torna o sistema globalmente assintóticamente controlável a um estado de equilíbrio. Como aplicação, apresentamos uma modelagem matemática adequada a um problema de controle ótimo de certos sistemas biológicos. Este trabalho conta também com um breve histórico sobre o desenvolvimento da Teoria de Controle de forma a ilustrar a importância, o progresso e a aplicação das técnicas de controle em diferentes áreas ao longo do tempo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a design methodology to stabilize isolated relative equilibria in a model of all-to-all coupled identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or to circular motion of all particles with fixed relative phases. The stabilizing feedbacks derive from Lyapunov functions that prove exponential stability and suggest almost global convergence properties. The results of the paper provide a low-order parametric family of stabilizable collectives that offer a set of primitives for the design of higher-level tasks at the group level. © 2007 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The properties of positively invariant sets are involved in many different problems in control theory, such as constrained control, robustness analysis, synthesis and optimization. In this paper we provide an overview of the literature concerning positively invariant sets and their application to the analysis and synthesis of control systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We wish to construct a realization theory of stable neural networks and use this theory to model the variety of stable dynamics apparent in natural data. Such a theory should have numerous applications to constructing specific artificial neural networks with desired dynamical behavior. The networks used in this theory should have well understood dynamics yet be as diverse as possible to capture natural diversity. In this article, I describe a parameterized family of higher order, gradient-like neural networks which have known arbitrary equilibria with unstable manifolds of known specified dimension. Moreover, any system with hyperbolic dynamics is conjugate to one of these systems in a neighborhood of the equilibrium points. Prior work on how to synthesize attractors using dynamical systems theory, optimization, or direct parametric. fits to known stable systems, is either non-constructive, lacks generality, or has unspecified attracting equilibria. More specifically, We construct a parameterized family of gradient-like neural networks with a simple feedback rule which will generate equilibrium points with a set of unstable manifolds of specified dimension. Strict Lyapunov functions and nested periodic orbits are obtained for these systems and used as a method of synthesis to generate a large family of systems with the same local dynamics. This work is applied to show how one can interpolate finite sets of data, on nested periodic orbits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The H∞ synchronization problem of the master and slave structure of a second-order neutral master-slave systems with time-varying delays is presented in this paper. Delay-dependent sufficient conditions for the design of a delayed output-feedback control are given by Lyapunov-Krasovskii method in terms of a linear matrix inequality (LMI). A controller, which guarantees H∞ synchronization of the master and slave structure using some free weighting matrices, is then developed. A numerical example has been given to show the effectiveness of the method