905 resultados para LONGITUDINAL DATA-ANALYSIS
Resumo:
Abstract Background For analyzing longitudinal familial data we adopted a log-linear form to incorporate heterogeneity in genetic variance components over the time, and additionally a serial correlation term in the genetic effects at different levels of ages. Due to the availability of multiple measures on the same individual, we permitted environmental correlations that may change across time. Results Systolic blood pressure from family members from the first and second cohort was used in the current analysis. Measures of subjects receiving hypertension treatment were set as censored values and they were corrected. An initial check of the variance and covariance functions proposed for analyzing longitudinal familial data, using empirical semi-variogram plots, indicated that the observed trait dispersion pattern follows the assumptions adopted. Conclusion The corrections for censored phenotypes based on ordinary linear models may be an appropriate simple model to correct the data, ensuring that the original variability in the data was retained. In addition, empirical semi-variogram plots are useful for diagnosis of the (co)variance model adopted.
Resumo:
A time series is a sequence of observations made over time. Examples in public health include daily ozone concentrations, weekly admissions to an emergency department or annual expenditures on health care in the United States. Time series models are used to describe the dependence of the response at each time on predictor variables including covariates and possibly previous values in the series. Time series methods are necessary to account for the correlation among repeated responses over time. This paper gives an overview of time series ideas and methods used in public health research.
Dimensions and determinants of upward mobility : a study based on longitudinal data from Delhi slums
Resumo:
This study based on two primary surveys of the same households in two different years (2007/08 and 2012) assesses the extent of inter-temporal change in income of the individual workers and makes an attempt to identify the factors which explain upward mobility in alternate econometric framework, envisaging endogeneity problem. It also encompasses a host of indicators of wellbeing and constructs the transition matrix to capture the extent of change over time at the household level. The findings are indicative of a rise in the income of workers across a sizeable percentage of households though many of them remained below the poverty line notwithstanding this increase. In fact, there is a wide spread deterioration in the wellbeing index constructed at the household level. Among several determinants of income rise two important policy prescriptions can be elicited. Inadequate education reduces the probability of upward mobility while education above a threshold level raises it. Savings are crucial for upward mobility impinging on the importance of asset creation. Views that entail neighbourhood spill-over effects also received validation. Besides, investment in housing and basic amenities turns out to be crucial for improvement in wellbeing levels.
Resumo:
The consensus from published studies is that plasma lipids are each influenced by genetic factors, and that this contributes to genetic variation in risk of cardiovascular disease. Heritability estimates for lipids and lipoproteins are in the range .48 to .87, when measured once per study participant. However, this ignores the confounding effects of biological variation measurement error and ageing, and a truer assessment of genetic effects on cardiovascular risk may be obtained from analysis of longitudinal twin or family data. We have analyzed information on plasma high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, and triglycerides, from 415 adult twins who provided blood on two to five occasions over 10 to 17 years. Multivariate modeling of genetic and environmental contributions to variation within and across occasions was used to assess the extent to which genetic and environmental factors have long-term effects on plasma lipids. Results indicated that more than one genetic factor influenced HDL and LDL components of cholesterol, and triglycerides over time in all studies. Nonshared environmental factors did not have significant long-term effects except for HDL. We conclude that when heritability of lipid risk factors is estimated on only one occasion, the existence of biological variation and measurement errors leads to underestimation of the importance of genetic factors as a cause of variation in long-term risk within the population. In addition our data suggest that different genes may affect the risk profile at different ages.
Resumo:
Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.
Resumo:
Background: The inherent complexity of statistical methods and clinical phenomena compel researchers with diverse domains of expertise to work in interdisciplinary teams, where none of them have a complete knowledge in their counterpart's field. As a result, knowledge exchange may often be characterized by miscommunication leading to misinterpretation, ultimately resulting in errors in research and even clinical practice. Though communication has a central role in interdisciplinary collaboration and since miscommunication can have a negative impact on research processes, to the best of our knowledge, no study has yet explored how data analysis specialists and clinical researchers communicate over time. Methods/Principal Findings: We conducted qualitative analysis of encounters between clinical researchers and data analysis specialists (epidemiologist, clinical epidemiologist, and data mining specialist). These encounters were recorded and systematically analyzed using a grounded theory methodology for extraction of emerging themes, followed by data triangulation and analysis of negative cases for validation. A policy analysis was then performed using a system dynamics methodology looking for potential interventions to improve this process. Four major emerging themes were found. Definitions using lay language were frequently employed as a way to bridge the language gap between the specialties. Thought experiments presented a series of ""what if'' situations that helped clarify how the method or information from the other field would behave, if exposed to alternative situations, ultimately aiding in explaining their main objective. Metaphors and analogies were used to translate concepts across fields, from the unfamiliar to the familiar. Prolepsis was used to anticipate study outcomes, thus helping specialists understand the current context based on an understanding of their final goal. Conclusion/Significance: The communication between clinical researchers and data analysis specialists presents multiple challenges that can lead to errors.
Resumo:
A combination of deductive reasoning, clustering, and inductive learning is given as an example of a hybrid system for exploratory data analysis. Visualization is replaced by a dialogue with the data.
Resumo:
The performance of three analytical methods for multiple-frequency bioelectrical impedance analysis (MFBIA) data was assessed. The methods were the established method of Cole and Cole, the newly proposed method of Siconolfi and co-workers and a modification of this procedure. Method performance was assessed from the adequacy of the curve fitting techniques, as judged by the correlation coefficient and standard error of the estimate, and the accuracy of the different methods in determining the theoretical values of impedance parameters describing a set of model electrical circuits. The experimental data were well fitted by all curve-fitting procedures (r = 0.9 with SEE 0.3 to 3.5% or better for most circuit-procedure combinations). Cole-Cole modelling provided the most accurate estimates of circuit impedance values, generally within 1-2% of the theoretical values, followed by the Siconolfi procedure using a sixth-order polynomial regression (1-6% variation). None of the methods, however, accurately estimated circuit parameters when the measured impedances were low (<20 Omega) reflecting the electronic limits of the impedance meter used. These data suggest that Cole-Cole modelling remains the preferred method for the analysis of MFBIA data.
Resumo:
The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
Regional planners, policy makers and policing agencies all recognize the importance of better understanding the dynamics of crime. Theoretical and application-oriented approaches which provide insights into why and where crimes take place are much sought after. Geographic information systems and spatial analysis techniques, in particular, are proving to be essential or studying criminal activity. However, the capabilities of these quantitative methods continue to evolve. This paper explores the use of geographic information systems and spatial analysis approaches for examining crime occurrence in Brisbane, Australia. The analysis highlights novel capabilities for the analysis of crime in urban regions.
Resumo:
Qualitative data analysis (QDA) is often a time-consuming and laborious process usually involving the management of large quantities of textual data. Recently developed computer programs offer great advances in the efficiency of the processes of QDA. In this paper we report on an innovative use of a combination of extant computer software technologies to further enhance and simplify QDA. Used in appropriate circumstances, we believe that this innovation greatly enhances the speed with which theoretical and descriptive ideas can be abstracted from rich, complex, and chaotic qualitative data. © 2001 Human Sciences Press, Inc.
Resumo:
In many occupational safety interventions, the objective is to reduce the injury incidence as well as the mean claims cost once injury has occurred. The claims cost data within a period typically contain a large proportion of zero observations (no claim). The distribution thus comprises a point mass at 0 mixed with a non-degenerate parametric component. Essentially, the likelihood function can be factorized into two orthogonal components. These two components relate respectively to the effect of covariates on the incidence of claims and the magnitude of claims, given that claims are made. Furthermore, the longitudinal nature of the intervention inherently imposes some correlation among the observations. This paper introduces a zero-augmented gamma random effects model for analysing longitudinal data with many zeros. Adopting the generalized linear mixed model (GLMM) approach reduces the original problem to the fitting of two independent GLMMs. The method is applied to evaluate the effectiveness of a workplace risk assessment teams program, trialled within the cleaning services of a Western Australian public hospital.