70 resultados para LICLO4


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two segmented polyethylene oxides, SPEO-3 and SPEO-4, were prepared using a novel transetherification methodology. Their structures were confirmed by H-1 and C-13 NMR spectroscopy. The complexation of these SPEO's with alkali-metal ions in solution was investigated by C-13 NMR spectroscopy. The mole-fraction method was used to determine the complexation ratio of SPEO with LIClO4 at 25 degrees C, which showed that these formed 1:1 (polymer repeat unit/salt) complexes. The association constant, K, for the complex formation was calculated from the variation of the chemical shift values with salt concentration, using a standard nonlinear least-square fitting procedure. The maximum change in chemical shift (Delta delta) and the K values suggest that both SPEO-3 and SPEO-4 formed stronger complexes with lithium salts than with sodium salts. Unexpectedly, the K values were found to be different, when the variation of delta of different carbons was used in the fitting procedure. This suggests that several possible complexed species may be in equilibrium with the uncomplexed one. Structurally similar model compounds were also prepared and their complexation studies indicated that all of them also formed 1:1 complexes with Li salts. Interestingly, it was observed that the polymers gave higher K values suggesting the formation of more stable complexes in polymers when compared to the model analogues. (C) 2000 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Important issues of water and thermal history affecting ion transport in a representative plastic crystalline lithium salt electrolyte: succinonitrile (SN)-lithium perchlorate (LiClO4) are discussed here. Ionic conductivity of electrolytes with high lithium salt amounts (similar to 1 M) in SN at a particular temperature is known to be influenced both by the trans-gauche isomerism and ion association (solvation), the two most important intrinsic parameters of the plastic solvent. In the present study both water and thermal history influence SN and result in enhancement of ionic conductivity of 1 M LiClO4-SN electrolyte. Systematic observations reveal that the presence of water in varying amounts promote ion-pair dissociation in the electrolyte. While trace amounts (approximate to 1-15 ppm) do not affect the trans-gauche isomerism of SN, the presence of water in large amounts (approximate to 5500 ppm) submerges the plasticity of SN. Subjugating the electrolyte to different thermal protocol resulted in enhancement of trans concentration only. This is an interesting observation as it demonstrates a simple and effective procedure involving utilization of an optimized set of external parameters to decouple solvation from trans-gauche isomerism. Observations from the ionic conductivity of various samples were accounted by changes in signature isomer and ion-association bands in the mid-IR regime and also from plastic to normal crystal transition temperature peak obtained from thermal studies. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Influence of succinonitrile (SN) dynamics on ion transport in SN-lithium perchlorate (LiClO4) electrolytes is discussed here via dielectric relaxation spectroscopy. Dielectric relaxation spectroscopy (similar to 2 x 10(-3) Hz to 3 MHz) of SN and SN-LiClO4 was studied as a function of salt content (up to 7 mol % or 1 M) and temperature (-20 to +60 degrees C). Analyses of real and imaginary parts of permittivity convincingly reveal the influence Of trans gauche isomerism and solvent-salt association (solvation) effects on ion transport. The relaxation processes are highly dependent on the salt concentration and temperature. While pristine SN display only intrinsic dynamics (i.e., trans-gauche isomerism) which enhances with an increase in temperature, SN-LiClO4 electrolytes especially at high salt concentrations (similar to 0.04-1 M) show salt-induced relaxation processes. In the concentrated electrolytes, the intrinsic dynamics was observed to be a function of salt content, becoming faster with an increase in salt concentration. Deconvolution of the imaginary part of the permittivity spectra using Havriliak-Negami (HN) function show a relaxation process corresponding to the above phenomena. The permittivity data analyzed using HN and Kohlrausch-Williams-Watta (KWW) functions show non-Debye relaxation processes and enhancement in the trans phase (enhanced solvent dynamics) as a function of salt concentration and temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ion conduction and thermal properties of composite solid polymer electrolyte (SPE) comprising Poly(ethylene) Glycol (PEG, mol wt. 2000), lithium perchlorate (LiClO4) and insulating Mn0.03Zn0.97Al2O4 nanoparticle fillers were studied by complex impedance analysis and DSC techniques. The average size of the nanoparticles was determined by powder X-ray diffraction (XRD) using Scherrer's equation and was found to be similar to 8 nm. The same was also determined by TEM imaging and found to be similar to 12 nm. The glass transition temperature T, as measured by differential scanning calorimeter (DSC), showed a minimum at 5 mol% of narroparticles. Fractional crystallinity was determined using DSC. NMR was used to deter-mine crystallinity of a pure PEG sample, which was then used as the standard. Fractional crystallinity X. was the lowest for 5 mol% and beyond. The ionic conductivity of the composite polymer electrolyte containing 5 mol% Mn0.03Zn0.97Al2O4 nanoparticles was found to be 1.82 x 10(-5) S/cm, while for the pristine one, it was 7.27 x 10(-7) S/cm at room temperature. As a function of nanoparticle content, conductivity was observed to go through two maxima, one at around 5 mol% and another shallower one at around 12 mol%. The temperature dependence of conductivity could be divided into two regions, one consistent with Arrhenius behaviour and the other with VTF. We conclude that the enhancement of ionic conductivity on the addition of Mn0.03Zn0.97Al2O4 nanoparticles is a result of reduction in both the T, and the crystallinity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LixCoOy films with x < 1 and y > 2 have been prepared by radio-frequency (rf) sputtering from high temperature (HT) LiCoO2 targets. Their structures have been examined with high resolution electron microscopy. Conductivities have been studied between 77 and 400 K. The electrochemical behaviour of film electrodes have been investigated with Li/LiClO4-PC/LixCoOy cells. The annealed films consist of nanocrystalline domains with amorphous boundaries. Electrical conductivities appear to arise from variable-range hopping (VRH) of holes. The films form good electrodes with operating potentials between 2.7 and 3.8 V. The observations have been discussed on the basis of a tentative and heuristic molecular orbital based energy band diagram. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A supporting electrolyte based on lithium perchlorate has been functionalized with graphene (ionic liquid functionalized graphene (IFGR)) by facile electrochemical exfoliation of graphite rods in aq. LiClO4 solution. Poly(3,4-ethylenedioxythiophene) (PEDOT)-IFGR films were prepared by electropolymerization of EDOT monomer with IFGR as supporting electrolyte in ethanol at static potential of 1.5 V. The Raman, SEM, and XPS analysis of PEDOT-IFGR film confirmed the presence of functionalized graphene in the film. The PEDOT-IFGR films showed good electrochemical properties, better ionic and electrical conductivity, significant band gap, and excellent spectroelectrochemical and electrochromic properties. The electrical conductivity of PEDOT-IFGR film was measured as about 3968 S cm(-1). PEDOT-IFGR films at reduced state showed strong and broad absorption in the whole visible region and remarkable absorption at near-IR region. PEDOT-IFGR film showed electrochromic response between transmissive blue and darkish gray at redox potential. The color contrast (%T) between fully reduced and oxidized states of PEDOT-IFGR film is 25 % at lambda (max) of 485 nm. The optical switching stability of PEDOT-IFGR film has retained 80 % of its electroactivity even after 500 cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss here the crucial role of the particle network and its stability on the long-range ion transport in solid liquid composite electrolytes. The solid liquid composite electrolytes chosen for the study here comprise nanometer sized silica (SiO2) particles having various surface chemical functionalities dispersed in nonaqueous lithium salt solutions, viz, lithium perchlorate (LiClO4) in two different polyethylene glycol based solvents. These systems constitute representative examples of an independent class of soft matter electrolytes known as ``soggy sand'' electrolytes, which have tremendous potential in diverse electrochemical devices. The oxide additive acts as a heterogeneous dopant creating free charge carriers and enhancing the local ion transport. For long-range transport, however, a stable spanning particle network is needed. Systematic experimental investigations here reveal that the spatial and time dependent characteristics of the particle network in the liquid solution are nontrivial. The network characteristics are predominantly determined by the chemical makeup of the electrolyte components and the chemical interactions between them. It is noteworthy that in this study the steady state macroscopic ionic conductivity and viscosity of the solid liquid composite electrolyte are observed to be greatly determined by the additive oxide surface chemical functionality, solvent chemical composition, and solvent dielectric constant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO4 polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap, which reduces parasitic effects and enables multiple, independently controllable gates. The method's simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices. © 2013 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

光通讯近年来发展迅速,正在从元件向集成发展,迫切需要利于集成的元件。主要的一些光学元件如激光器、放大器等均采用无机材料,连接和集成存在困难。发展易于集成的有机光学元件是目前该领域研发的一个热点。电致变色是一个古老的题目,一般都在可见区,而光通讯波长主要是1300和1550nm,是近红外区。在近红外区的工作刚刚开始,.用于光衰减器的研究已有报道,但还没有达到实际要求,寻找新型的电致变色材料及其适合这些材料的新的器件构型是目前研究的重点。本文研究了三种新的有机近红外电致变色材料及其器件:PEDOT:PSS、Ru星状化合物和酞警噜。本文通过电化学、吸收光谱、X射线衍射、AFM等实验方法和手段表征了样品的本体性质、近红外电致变色,性质和器件性能。结果如下:本论文首先研究了PEDOT:PSS的近红外电致变色性质。实验结果首次表明通过掺杂如Liclo4的电解质可以提高近红外电致变色器件的性能。通过掺杂,褪色时间从30秒缩短到2.8秒,着色时间从9.2秒缩短到2.7秒,变色效率从105cm2/C提高到3llcm2/C。掺杂后薄膜离子导电率提高是器件性能改善的原因。另外还制备了基于不同厚度的PEDOT:PSS薄膜的器件,发现对于一定掺杂浓度有一个最佳的厚度,在这个厚度下器件有较大的调制能力和较小的透过损失。本论文第二部分研究Ru星状化合物。通过对基于Ru星状化合物溶液的动力学的研究,证明了调制能力与溶液浓度和外加电压的关系。之后研究开发了有新构型的近红外电致变色器件,以Ru(II,II)态化合物溶液代替其交联薄膜和电解质层来形成固液型器件,同时改善了氧化钨的制备方法。将器件对1550nm光的调制能力从文献报道的2dB提高到16dB。本论文还首次报道了酞警噜的近红外电致变色性质,发现它既可以作为阳极电致变色材料也可以作为阴极电致变色材料。酞普噜的溶液和薄膜均可用于制备电致变色器件,器件的响应速度分别为23秒和1秒。但因为中性态酞警噜对1300nm和1550nm的光吸收较小,器件的调制能力也较小(-0.3dB)。 论文的最后部分详细阐述了有机光电器件表征系统的搭建及测量方法,包括电调制光的电致变色器件测试系统、光转换为电的有机光电二极管或太阳能电池等光电器件测试系统和电转换为光的有机电致发光二极管的器件测试系统。本论文的结果证明采用新构型可以提高近红外电致变色器件的性能;通过掺杂可以缩短电致变色器件的响应时间和提高其变色效率;同时还首次报道了酞瞥噜的近红外电致变色性质。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical properties Of PW12O403- (abbreviated as PW12) anion in poly(ethylene glycol) (PEG) have been studied by cyclic voltammetry, complex impedance and FT-IR spectroscopy. The PW12 anion in PEG-LiClO4 electrolyte shows reasonable facile electrochemistry, and the diffusion coefficients Of PW12 were measured with microelectrode. It is shown that ionic conductivity of polymer electrolytes based on low molecular weight PEG can be improved by the addition of PW12. The increase of conductivity is coupled with decrease of transient cross-links density of polymer chains which is evidenced by the downshift of C-O-C stretching mode. The phenomena are explained in view of ion-ion and ion-polymer interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical behavior of alpha-Keggin-type nanoparticles, Co(en)(3)(PMo12O40) (abbreviated as PMo12-Co), have been studied in poly(ethylene glycol) for four different molecular weights (PEG, average MW 400, 600, 1000, and 2000 g mol(-1)) and containing LiClO4 (O/Li=100/1) supporting electrolyte. The diffusion coefficients of the PMo12-Co nanoparticles were determined using a microelectrode by chronoamperometry for PEG of different molecular weights that were used to describe the diffusion behavior of PMo12-Co nanoparticles in different phase states. Moreover, the conductivity of the composite system increases upon addition of PMo12-Co nanoparticles, which was measured by an a.c. impedance technique. FT-IR spectra and DSC were used to follow the interactions of PEG-LiClO4-PMo12-Co, and well described the reason that the PMo12-Co nanoparticles could promote the conductivity of the PEG-LiClO4-PMo12-Co system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymeric electrolytes of (PEO1)(10) LiClO4-Al2O3 (PEO: poly (ethyleneoxide)) and (PEO2)(16)LiClO4-EC (EC: ethylene carbonate) were prepared. We proposed an equivalent circuit and gave the meaning of the concerned circuit elements. When the impedance spectrum deformed severely, the ionic conductivity of polymer electrolyte was determined by using the maximum of imaginary impedance, which is a convenient method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ac impedance plots of ( PEO)(16) LiClO4-EC composite polymer electrolytes were studied. The equivalent circuit of stainless steel electrode(SS)/composite electrolyte/SS system was applied to explain the ac impedance plots, The results showed that the equivalent circuit could fit the experimental data very well. The ionic conductivity was calculated using the bulk resistance that was obtained from equivalent circuit. The effect of EC on the conductive behavior was explained by the interactions among different species formed in the composite polymer electrolytes. For lower EC concentration samples, the temperature dependence of conductivity in low temperature range followed Arrhenius type, but when EC concentration was larger than 20%, the temperature dependence of conductivity obeyed the Vogel-Tamman-Fulcher (VTF) equation in all temperature ranges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

用交流阻抗法研究了 (PEO1 ) 1 0 LiClO4 Al2 O3和 (PEO2 ) 1 6 LiClO4 碳酸乙烯酯 (EC)两种复合聚合物电解质体系的电导率 ,给出了等效电路和各拟合元件的物理意义。当阻抗谱图发生严重变形时 ,提出一种比较简单的计算聚合物电解质电导率的方法———阻抗虚部最大值法

Relevância:

10.00% 10.00%

Publicador:

Resumo:

制备了PEO LiClO4 Al2 O3及PEO LiClO4 碳酸乙烯酯 (EC)两种聚环氧乙烷(PEO)复合聚合物电解质 (SPE)薄膜 ,用不锈钢及铂两种惰性电极研究了聚合物电解质的交流阻抗特性 ,并对SPE/惰性电极的界面特性进行了研究 .提出了一种具有普适性的等效电路 ,发现电导率的测定与采用的惰性电极有关 .而且交流阻抗谱图与所加交流扰动幅度无关 ,但与直流极化电势有关 .EC含量的增加对低频直线的斜率也有影响.