979 resultados para LEISHMANIA MAJOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we investigated the interaction of the obligate intracellular parasite Leishmania (L.) major with two phenotypes of human monocyte derived macrophages (hMDMs). Thereby we focused on the development and maturation of the parasitophorous vacuole (PV) and could show that compartment development is dependent on the parasite stage.rnFocusing on the ultrastructure of PVs containing axenic amastigotes, we demonstrated that the parasites are partially located in damaged PVs or in the cytoplasm of the host. Moreover, we visualized multiple amastigotes in a common PV 144 h p.i. in pro-inflammatory hMDM I but not in anti-inflammatory hMDM II indicating different PV development. rnRegarding the promastigote form, we demonstrated a different uptake of viable and apoptotic L. major promastigotes by hMDMs. Viable promastigotes are predominantly taken up via the flagellum tip whereas apoptotic promastigotes enter the cells via the parasite body. Analyzing compartment maturation, we found that 20-30% of the PVs get positive for the early maturation markers PI3P and EEA1 independent of the viability of the parasites and unaffected by the human macrophage type. Subsequently, 25-40% of the parasites acquire the autophagy marker LC3 on their PV, what is independent of the viability of the parasites as well. We quantified this and in hMDM II less LC3-positive compartments formed compared to hMDM I. Analyzing the ultrastructure, we investigated that the compartments consist of a single-membrane PV characteristic for LC3-associated phagocytosis (LAP). Involvement of LAP was confirmed by demonstrating that the protein kinase ULK1 is dispensable for LC3-compartment formation around Leishmania PVs. Visualizing compartment dynamics in real time showed that apoptotic promastigotes are degraded in LC3-positve compartments, whereas viable promastigotes are able to get rid of LC3-protein on their PV suggesting an involvement in parasite development and survival. In this thesis, we established a lentiviral based fluorescent imaging technique that we combined with High-Pressure-Freezing (HPF) and high-resolution 3D electron microscopy. We visualized a promastigote in a LC3-compartment whose ultrastructure showed an opening of the PV to the outside. To identify new LAP markers involved in Leishmania infection, we established an immuno-magnetic isolation protocol for the purification of Leishmania containing compartments.rnIn conclusion, this study suggests that L. major compartment biogenesis and maturation in pro- and anti-inflammatory human macrophages is dependent on the parasite stage and is different between axenic amastigotes, viable promastigotes and apoptotic promastigotes. Understanding the development and maturation of Leishmania parasites in human host cells is important to control and combat the neglected disease leishmaniasis in the future.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit fokussierten wir uns auf drei verschiedene Aspekte der Leishmanien-Infektion. Wir charakterisierten den Prozess des Zelltods „Apoptose“ bei Parasiten (1), untersuchten die Eignung von Makrophagen und dendritischen Zellen als Wirtszelle für die Entwicklung der Parasiten (2) und analysierten die Konsequenzen der Infektion für die Entstehung einer adaptiven Immunantwort im humanen System. Von zentraler Bedeutung für dieses Projekt war die Hypothese, dass apoptotische Leishmanien den Autophagie-Mechanismus ihrer Wirtszellen ausnutzen, um eine T-Zell-vermittelte Abtötung der Parasiten zu vermindern.rnWir definierten eine apoptotische Leishmanien-Population, welche durch eine rundliche Morphologie und die Expression von Phosphatidylserin auf der Parasitenoberfläche charakterisiert war. Die apoptotischen Parasiten befanden sich zudem in der SubG1-Phase und wiesen weniger und fragmentierte DNA auf, welche durch TUNEL-Assay nachgewiesen werden konnte. Bei der Interaktion der Parasiten mit humanen Makrophagen und dendritischen Zellen zeigte sich, dass die anti-inflammatorischen Makrophagen anfälliger für Infektionen waren als die pro-inflammatorischen Makrophagen oder die dendritischen Zellen. Interessanterweise wurde in den dendritischen Zellen jedoch die effektivste Umwandlung zur krankheitsauslösenden, amastigoten Lebensform beobachtet. Da sowohl Makrophagen als auch dendritische Zellen zu den antigenpräsentierenden Zellen gehören, könnte dies zur Aktivierung der T-Zellen des adaptiven Immunsystems führen. Tatsächlich konnte während der Leishmanien-Infektion die Proliferation von T-Zellen beobachtet werden. Dabei stellten wir fest, dass es sich bei den proliferierenden T-Zellen um CD3+CD4+ T-Zellen handelte, welche sich überraschenderweise als Leishmanien-spezifische CD45RO+ T-Gedächtniszellen herausstellten. Dies war unerwartet, da ein vorheriger Kontakt der Spender mit Leishmanien als unwahrscheinlich gilt. In Gegenwart von apoptotischen Parasiten konnte eine signifikant schwächere T-Zell-Proliferation in Makrophagen, jedoch nicht in dendritischen Zellen beobachtet werden. Da sich die T-Zell-Proliferation negativ auf das Überleben der Parasiten auswirkt, konnten die niedrigsten Überlebensraten in dendritischen Zellen vorgefunden werden. Innerhalb der Zellen befanden sich die Parasiten in beiden Zelltypen im Phagosom, welches allerdings nur in Makrophagen den Autophagie-Marker LC3 aufwies. Chemische Induktion von Autophagie führte, ebenso wie die Anwesenheit von apoptotischen Parasiten, zu einer stark reduzierten T-Zell-Proliferation und dementsprechend zu einem höheren Überleben der Parasiten.rnZusammenfassend lässt sich aus unseren Daten schließen, dass Apoptose in Einzellern vorkommt. Während der Infektion können sowohl Makrophagen, als auch dendritische Zellen mit Leishmanien infiziert und das adaptive Immunsystem aktivert werden. Die eingeleitete T-Zell-Proliferation nach Infektion von Makrophagen ist in Gegenwart von apoptotischen Parasiten reduziert, weshalb sie im Vergleich zu dendritischen Zellen die geeigneteren Wirtszellen für Leishmanien darstellen. Dafür missbrauchen die Parasiten den Autophagie-Mechanismus der Makrophagen als Fluchtstrategie um das adaptive Immunsystem zu umgehen und somit das Überleben der Gesamtpopulation zu sichern. Diese Ergebnisse erklären den Vorteil von Apoptose in Einzellern und verdeutlichen, dass der Autophagie-Mechanismus als potentielles therapeutisches Ziel für die Behandlung von Leishmaniose dienen kann.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutrophils are recruited to the site of parasite inoculation within a few hours of infection with the protozoan parasite Leishmania major. In C57BL/6 mice, which are resistant to infection, neutrophils are cleared from the site of s.c. infection within 3 days, whereas they persist for at least 10 days in susceptible BALB/c mice. In the present study, we investigated the role of macrophages (MPhi) in regulating neutrophil number. Inflammatory cells were recruited by i.p. injection of either 2% starch or L. major promastigotes. Neutrophils were isolated and cultured in the presence of increasing numbers of MPhi. Extent of neutrophil apoptosis positively correlated with the number of MPhi added. This process was strictly dependent on TNF because MPhi from TNF-deficient mice failed to induce neutrophil apoptosis. Assays using MPhi derived from membrane TNF knock-in mice or cultures in Transwell chambers revealed that contact with MPhi was necessary to induce neutrophil apoptosis, a process requiring expression of membrane TNF. L. major was shown to exacerbate MPhi-induced apoptosis of neutrophils, but BALB/c MPhi were not as potent as C57BL/6 MPhi in this induction. Our results emphasize the importance of MPhi-induced neutrophil apoptosis, and membrane TNF in the early control of inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major. Results This paper presents the identification of three class I cyclic-nucleotide-specific phosphodiesterases (PDEs) from L. major, PDEs whose catalytic domains exhibit considerable sequence conservation with, among other, all eleven human PDE families. In contrast to other protozoa such as Dictyostelium, or fungi such as Saccharomyces cerevisiae, Candida ssp or Neurospora, no genes for class II PDEs were found in the Leishmania genomes. LmjPDEA contains a class I catalytic domain at the C-terminus of the polypeptide, with no other discernible functional domains elsewhere. LmjPDEB1 and LmjPDEB2 are coded for by closely related, tandemly linked genes on chromosome 15. Both PDEs contain two GAF domains in their N-terminal region, and their almost identical catalytic domains are located at the C-terminus of the polypeptide. LmjPDEA, LmjPDEB1 and LmjPDEB2 were further characterized by functional complementation in a PDE-deficient S. cerevisiae strain. All three enzymes conferred complementation, demonstrating that all three can hydrolyze cAMP. Recombinant LmjPDEB1 and LmjPDEB2 were shown to be cAMP-specific, with Km values in the low micromolar range. Several PDE inhibitors were found to be active against these PDEs in vitro, and to inhibit cell proliferation. Conclusion The genome of L. major contains only PDE genes that are predicted to code for class I PDEs, and none for class II PDEs. This is more similar to what is found in higher eukaryotes than it is to the situation in Dictyostelium or the fungi that concomitantly express class I and class II PDEs. Functional complementation demonstrated that LmjPDEA, LmjPDEB1 and LmjPDEB2 are capable of hydrolyzing cAMP. In vitro studies with recombinant LmjPDEB1 and LmjPDEB2 confirmed this, and they demonstrated that both are completely cAMP-specific. Both enzymes are inhibited by several commercially available PDE inhibitors. The observation that these inhibitors also interfere with cell growth in culture indicates that inhibition of the PDEs is fatal for the cell, suggesting an important role of cAMP signalling for the maintenance of cellular integrity and proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 A resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TNF is an essential player in infections with Leishmania major, contributing to the control of the inflammatory lesion and, to a lesser degree, to parasite killing. However, the relative contribution of the soluble and transmembrane forms of TNF in these processes is unknown. To investigate the role of transmembrane TNF (mTNF) in the control of L. major infections, mTNF-knock-in (mTNF(Delta/Delta)) mice, which express functional mTNF but do not release soluble TNF, were infected with L. major, and the development of the inflammatory lesion and the immune response was compared to that occurring in L. major-infected TNF(-/-) and wild-type mice. mTNF(Delta/Delta) mice controlled the infection and resolved their inflammatory lesion as well as wild-type mice, a process associated with the early clearance of neutrophils at the site of parasite infection. In contrast, L. major-infected TNF(-/-) mice developed non-healing lesions, characterized by an elevated presence of neutrophils at the site of infection and partial control of parasite number within the lesions. Altogether, the results presented here demonstrate that mTNF, in absence of soluble TNF, is sufficient to control infection due to L. major, enabling the regulation of inflammation, and the optimal killing of Leishmania parasites at the site of infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum IgE concentrations and the expression of the low-affinity receptor for IgE (Fc epsilon RII/CD23) are increased in cutaneous leishmaniasis or after immune challenge with Leishmania antigens. In vitro, the ligation of CD23 by IgE-anti-IgE immune complexes (IgE-IC) or by anti-CD23 monoclonal antibody (mAb) induces nitric oxide (NO) synthase and the generation of various cytokines by human monocytes/macrophages. The present study shows that IgE-IC, via CD23 binding, induce intracellular killing of Leishmania major in human monocyte-derived macrophages through the induction of the L-arginine:NO pathway. This was demonstrated by increased generation of nitrite (NO2-), the stable oxidation product of NO, and by the ability of NG-monomethyl-L-arginine to block both NO generation and parasite killing. A similar NO-dependent effect was observed with interferon gamma-treated cells. Tumor necrosis factor alpha is involved in this process, since both the induction of NO synthase and the killing of parasites caused by anti-CD23 mAb were inhibited by an anti-tumor necrosis factor alpha mAb. Treatment of noninfected CD23+ macrophages with IgE-IC provided protection against subsequent in vitro infection of these cells by Leishmania major promastigotes. Thus, IgE-IC promote killing of L. major by inducing NO synthase in human macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful treatment in allergic, autoimmune, and infectious diseases often requires altering the nature of a detrimental immune response mediated by a particular CD4+ T helper (Th) cell subset. While several factors contribute to the development of CD4+ Th1 and Th2 cells, the requirements for switching an established response are not understood. Here we use infection with Leishmania major as a model to investigate those requirements. We report that treatment with interleukin 12 (IL-12), in combination with the antimony-based leishmanicidal drug Pentostam, induces healing in L. major-infected mice and that healing is associated with a switch from a Th2 to a Th1 response. The data suggest that decreasing antigen levels may be required for IL-12 to inhibit a Th2 response and enhance a Th1 response. These observations are important for treatment of nonhealing forms of human leishmaniasis and also demonstrate that in a chronic infectious disease an inappropriate Th2 response can be switched to an effective Th1 response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmania major parasites reside and multiply in late endosomal compartments of host phagocytic cells. Immune control of Leishmania growth absolutely requires expression of inducible Nitric Oxide Synthase (iNOS/NOS2) and subsequent production of NO. Here, we show that CD11b+ CD11c+ Ly-6C+ MHC-II+ cells are the main iNOS-producing cells in the footpad lesion and in the draining lymph node of Leishmania major-infected C57BL/6 mice. These cells are phenotypically similar to iNOS-producing inflammatory DC (iNOS-DC) observed in the mouse models of Listeria monocytogenes and Brucella melitensis infection. The use of DsRed-expressing parasites demonstrated that these iNOS-producing cells are the major infected population in the lesions and the draining lymph nodes. Analysis of various genetically deficient mouse strains revealed the requirement of CCR2 expression for the recruitment of iNOS-DC in the draining lymph nodes, whereas their activation is strongly dependent on CD40, IL-12, IFN-gamma and MyD88 molecules with a partial contribution of TNF-alpha and TLR9. In contrast, STAT-6 deficiency enhanced iNOS-DC recruitment and activation in susceptible BALB/c mice, demonstrating a key role for IL-4 and IL-13 as negative regulators. Taken together, our results suggest that iNOS-DC represent a major class of Th1-regulated effector cell population and constitute the most frequent infected cell type during chronic Leishmania major infection phase of C57BL/6 resistant mice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Efficient formation of early GCs depends on the close interaction between GC B cells and antigen-primed CD4+ follicular helper T cells (TFH). A tight and stable formation of TFH/B cell conjugates is required for cytokine-driven immunoglobulin class switching and somatic hypermutation of GC B cells. Recently, it has been shown that the formation of TFH/B cell conjugates is crucial for B-cell differentiation and class switch following infection with Leishmania major parasites. However, the subtype of DCs responsible for TFH-cell priming against dermal antigens is thus far unknown. Utilizing a transgenic C57BL/6 mouse model designed to trigger the ablation of Langerin+ DC subsets in vivo, we show that the functionality of TFH/B cell conjugates is disturbed after depletion of Langerhans cells (LCs): LC-depleted mice show a reduction in somatic hypermutation in B cells isolated from TFH/B cell conjugates and markedly reduced GC reactions within skin-draining lymph nodes. In conclusion, this study reveals an indispensable role for LCs in promoting GC B-cell differentiation following cutaneous infection with Leishmania major parasites. We propose that LCs are key regulators of GC formation and therefore have broader implications for the development of allergies and autoimmunity as well as for future vaccination strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host’s iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host’s oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Limonene is a monoterpene that has antitumoral, antibiotic and antiprotozoal activity. In this study we demonstrate the activity of limonene against Leishmania species in vitro and in vivo. Limonene killed Leishmania amazonensis promastigotes and amastigotes with 50% inhibitory concentrations of 252.0 +/- 49.0 and 147.0 +/- 46.0 mu M, respectively. Limonene was also effective against Leishmania major, Leishmania braziliensis and Leishmania chagasi promastigotes. The treatment of L. amazonensis-infected macrophages with 300 mu M limonene resulted in 78% reduction in infection rates. L. amazonensis-infected mice treated topically or intrarectally with limonene had significant reduction of lesion sizes. A significant decrease in the parasite load was shown in the lesions treated topically with limonene by histopathological examination. The intrarectal treatment was highly effective in decreasing the parasite burden, healing established lesions and suppressing the dissemination of ulcers. Limonene presents low toxicity in humans and has been shown to be effective as an agent for enhancing the percutaneous permeation of drugs. Our results suggest that limonene should be tested in different experimental models of infection by Leishmania. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Leishmania amazonensis telomerase gene was cloned by a polymerase chain reaction-based strategy using primers designed from a Leishmania major sequence that shared similarities with conserved telomerase motifs. The genes from three other species were cloned for comparative purposes. A ClustalW multiple-sequence alignment demonstrated that the Leishmania telomerases show greater homology with each other than with the proteins of other kinetoplastids and eukaryotes. Characterization experiments indicated that the putative Leishmania telomerase gene was probably in single copy and located in the largest chromosomes. A single messenger ribonucleic acid transcript was found in promastigotes. Phylogenetic analysis suggested that Leishmania telomerase might represent a liaison between the oldest and the newest branches of telomerases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Immunity against the intracellular protozoan Leishmania species is highly dependent on Th1 development. We have previously shown that IL-12 is a powerful and probably obligatory factor for Th1 cell generation and proliferation. We also observed that the experimental infection of C3H and BALB/c mice with Leishmania major is associated with IL-12 production in vivo. Now we demonstrate that metacyclic L. major promastigotes are poor inducers of IL-12 in vitro in fresh human PBMC and monocytes. In addition, we show that the ability of this pathogen to induce IL-12 and other cytokines is modulated by the metacyclogenic process, which had previously not been recognized. In contrast to the infective parasites (metacyclic promastigotes), the procyclic promastigotes collected at the logarithmic phase of the culture displayed a striking ability to induce IL-12, IFN-γ, TNF-α, and IL-10. Despite this differential effect of procyclic and metacyclic parasites in terms of IL-12 induction, both stages were inhibitory for IL-12 production induced by Staphylococcus aureus. The ability of procyclic promastigotes and, to a much lesser extent, that of metacyclic promastigotes to induce IL-12 were enhanced by pretreatment of monocytes in a cytokine milieu containing IFN-γ, IL-4, IL-13, or granulocyte-macrophage CSF or. by neutralization of endogenous IL-10. Our results suggest the development of an evasion mechanism as the Leishmania promastigotes mature to infectious forms and the possi-bility of using Ags derived from procyclic promastigotes for immunization procedures. Copyright © 1997 by The American Association of Immunologists.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Células de Langerhans (CL) são células apresentadoras de antígenos, MHC classe II positivas, que constituem 2 a 3% de todas as células da epiderme, e que têm demonstrado serem estimuladoras de uma resposta vigorosa de linfócitos T contra Leishmania major. A leishmanionse cutânea do Novo Mundo é causada por diferentes espécies, apresentando formas clínicas diversas variando de leishmaniose cutânea difusa anérgica. Utilizando a técnica de "panning", CL da epiderme de comundongos BALB/c foram purificadas para em torno de 95% de pureza (pCL) em relação à outras células da epiderme. As CL recentemente isoladas apresentaram dentritos pequenos e delicados e os clássicos grânulos de Birbeck. Tem sido sugerido que os parasitos do subgênero Viannia e Leishmania, que são geneticamente bastante distintos, podem ter respostas espécie-específicas na resposta imune celular. Neste estudo, pCL e L. (V.) brasilienses ou L. (L.) amazonensis foram cultivadas e a morfologia das CL foi analizada após 12 ou 36 h de cultura. Utilizando a coloração de Giemsa e a microscopia eletrônica de varredura, alterações morfológicas diferentes foram detectadas nas CL após 12 h de cultivo nas duas culturas, CL e L. (V.) brasiliensis ou CL e L. (L.) amazonensis. Depois da interação com L. (V.) brasiliensis as CL tornaram-se mais dentríticas, que eram mais curtos quando comparados às CL cultivadas isoladamente. Em contraste, após a interação com L. (L.) amazonensis, as CL tornaram-se arredondadas com algumas células mostrando alguns dendritos. Além disto, verificou-se um contato íntimo entre o flagelo das prostigota com as CL, mas sem observar a fagocitose das leishmanias após 12 ou 36 h de cultivo, o que é diferente dos relatos da literatura com CL e L. major. Estes resultados sugerem que a resposta imune primária das CL contra as diferentes espécies de leishamania podem ser distintas de acordo com a espécie envolvida no processo de interação.