989 resultados para LATERAL SEPTAL AREA
Resumo:
The lateral intraparietal area (LIP) of macaque posterior parietal cortex participates in the sensorimotor transformations underlying visually guided eye movements. Area LIP has long been considered unresponsive to auditory stimulation. However, recent studies have shown that neurons in LIP respond to auditory stimuli during an auditory-saccade task, suggesting possible involvement of this area in auditory-to-oculomotor as well as visual-to-oculomotor processing. This dissertation describes investigations which clarify the role of area LIP in auditory-to-oculomotor processing.
Extracellular recordings were obtained from a total of 332 LIP neurons in two macaque monkeys, while the animals performed fixation and saccade tasks involving auditory and visual stimuli. No auditory activity was observed in area LIP before animals were trained to make saccades to auditory stimuli, but responses to auditory stimuli did emerge after auditory-saccade training. Auditory responses in area LIP after auditory-saccade training were significantly stronger in the context of an auditory-saccade task than in the context of a fixation task. Compared to visual responses, auditory responses were also significantly more predictive of movement-related activity in the saccade task. Moreover, while visual responses often had a fast transient component, responses to auditory stimuli in area LIP tended to be gradual in onset and relatively prolonged in duration.
Overall, the analyses demonstrate that responses to auditory stimuli in area LIP are dependent on auditory-saccade training, modulated by behavioral context, and characterized by slow-onset, sustained response profiles. These findings suggest that responses to auditory stimuli are best interpreted as supramodal (cognitive or motor) responses, rather than as modality-specific sensory responses. Auditory responses in area LIP seem to reflect the significance of auditory stimuli as potential targets for eye movements, and may differ from most visual responses in the extent to which they arc abstracted from the sensory parameters of the stimulus.
Resumo:
Neurons in the primate lateral intraparietal area (area LIP) carry visual, saccade-related and eye position activities. The visual and saccade activities are anchored in a retinotopic framework and the overall response magnitude is modulated by eye position. It was proposed that the modulation by eye position might be the basis of a distributed coding of target locations in a head-centered space. Other recording studies demonstrated that area LIP is involved in oculomotor planning. These results overall suggest that area LIP transforms sensory information for motor functions. In this thesis I further explore the role of area LIP in processing saccadic eye movements by observing the effects of reversible inactivation of this area. Macaque monkeys were trained to do visually guided and memory saccades and a double saccade task to examine the use of eye position signal. Finally, by intermixing visual saccades with trials in which two targets were presented at opposite sides of the fixation point, I examined the behavior of visual extinction.
In chapter 2, I will show that lesion of area LIP results in increased latency of contralesional visual and memory saccades. Contralesional memory saccades are also hypometric and slower in velocity. Moreover, the impairment of memory saccades does not vary with the duration of the delay period. This suggests that the oculomotor deficits observed after inactivation of area LIP is not due to the disruption of spatial memory.
In chapter 3, I will show that lesion of area LIP does not severely affect the processing of spontaneous eye movement. However, the monkeys made fewer contralesional saccades and tended to confine their gaze to the ipsilesional field after inactivation of area LIP. On the other hand, lesion of area LIP results in extinction of the contralesional stimulus. When the initial fixation position was varied so that the retinal and spatial locations of the targets could be dissociated, it was found that the extinction behavior could best be described in a head-centered coordinate.
In chapter 4, I will show that inactivation of area LIP disrupts the use of eye position signal to compute the second movement correctly in the double saccade task. If the first saccade steps into the contralesional field, the error rate and latency of the second saccade are both increased. Furthermore, the direction of the first eye movement largely does not have any effect on the impairment of the second saccade. I will argue that this study provides important evidence that the extraretinal signal used for saccadic localization is eye position rather than a displacement vector.
In chapter 5, I will demonstrate that in parietal monkeys the eye drifts toward the lesion side at the end of the memory saccade in darkness. This result suggests that the eye position activity in the posterior parietal cortex is active in nature and subserves gaze holding.
Overall, these results further support the view that area LIP neurons encode spatial locations in a craniotopic framework and is involved in processing voluntary eye movements.
Resumo:
In this study we investigated the influence of d(CH2)(5)-Tyr (Me)-AVP (A(1) AVP) and [Adamanteanacatyl(1),D-ET-D-Tyr(2), Va1(4), aminobutyril(6) ,As-8,As-9]-AVP 9 (A(2)AVP), antagonists of V-1 and V-2 arginine(8)-vasopressin (AVP) receptors, respectively, as well as the effects of losartan and CGP42112A, antagonists of angiotensin II (ANGII) AT(1) and AT(2), receptors, respectively, on water and 0.3 M sodium intake induced by water deprivation or sodium depletion (furosemide treatment) and enhanced by AVP injected into the medial septal area (N4SA). A stainless steel carmulawas implanted into the medial septal area (NISA) of male Holtzman rats AVP injection enhanced water and sodium intake in a dose-dependent manner. Pretreatment with V-1 antagonist injected into the MSA produced a dose-dependent reduction, whereas prior injection of V-2 antagonist increased, in a dose-dependent manner, the water and sodium responses elicited by the administration of AVP. Both AT(1) and AT(2) antagonists administered into the MSA elicited a concentration-dependent decrease in water and sodium intake induced by AVP, while simultaneous injection of the two antagonists was more effective in decreasing AVP responses. These results also indicate that the increase in water and sodium intake induced by AvT was mediated primarily by MSA AT(1) receptors. (c) 2007 Published by Elsevier B.V.
Resumo:
Water and sodium chloride intake was studied in male Holtzman rats weighing 250-300 g that had been subjected to electrolytic and chemical lesions of the septal area (SA). Water intake increased in animals with electrolytic lesion of the SA bilaterally from 169.37 +/- 8.55 (sham) to 214.87 +/- 23.10 ml/5 days (lesioned). Water intake decreased after ibotenic acid lesion of the SA from 229.33 +/- 27.60 to 127.33 +/- 22.84 ml/5 days. Sodium chloride intake (1.5%) increased in animals with electrolytic lesion of the SA from 10.0 +/- 1.73 to 15.5 +/- 1.95 ml/5 days after lesion. Also sodium chloride (1.5%) intake increased after ibotenic acid injection into the SA to a greater extent (from 7.83 +/- 1.25 to 14.33 +/- 1.87 ml/5 days). The results indicate that the water intake response may be due to lesions that involve cell bodies and fibers of passage and that the sodium intake response can also be induced by lesions which involve only cell bodies. Finally, these results led us to conclude that the SA uses its cell bodies and afferent bodies and fibers for processing inputs mediating water intake and salt appetite and that the cells bodies of the SA are implicated in increased water intake. (C) 1998 Elsevier B.V.
Resumo:
We determined the effects of moxonidine and rilmenidine 20 mol (alpha(2)-adrenergic and imidazoline receptor agonists) injected into the medial septal area (MSA) on the pilocarpine-induced salivation, when injected intraperitoneally (i.p.), of male Holtzman rats weighing 250300 g, with stainless-steel cannula implanted into the MSA. The rats were anesthetized with zoletil 50 mg kg(-1) b.wt. (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle intramuscularly (IM), saliva was collected using pre-weighed small cotton balls inserted in the animal's mouth. The pre-treatment with moxonidine injected into the MSA reduced the salivation induced by pilocarpine (1 mg kg(-1)) injected i.p. (12 +/- 3 mg min(-1)) vs. control (99 +/- 9 mg min(-1)). The pre-treatment with rilmenidine 40 nmol also reduced the salivation induce by pilocarpine injected i.p. (20 +/- 5 mg min(-1)) vs. control (94 +/- 7 mg min(-1)). Idazoxan 40 nmol (imidazoline receptor antagonist) injected into the MSA previous to moxonidine and rilmenidine partially blocked the effect of moxonidine and totally blocked the rilmenidine effect in pilocarpine-induced salivation injected i.p. (60 +/- 8 and 95 +/- 10 mg min(-1), respectively). Yohimbine 40 nmol (alpha(2)-adrenergic receptor antagonist) injected into the MSA previously to moxonidine and rilmenidine partially blocked the moxonidine effect but produced no change on the rilmenidine effect on i.p. pilocarpine-induced salivation (70 +/- 6 and 24 +/- 6 mg min(-1), respectively). Injection of these alpha(2)-adrenergic and imidazoline agonists and antagonists agents i.p. produced no change on i.p. pilocarpine-induced salivation. These results show that central, but not peripheral, injection of alpha(2)-adrenergic and imidazoline agonists' agents inhibit pilocarpine-induced salivation. Idazoxan, an imidazoline receptor antagonist, totally inhibits the rilmenidine effect and partially inhibits the moxonidine effect on pilocarpine-induced salivation. Yohimbine produced no change on rilmenidine effect but partially inhibited the moxonidine effect. Both of these antagonists when injected into the MSA previous to pilocarpine i.p. potentiated the sialogogue effect of pilocarpine. The results suggest that alpha(2)-adrenergic/imidazoline receptor of the MSA when stimulated blocked pilocarpine-induced salivation in rats when injected intraperitonially These receptors of the medial septal area have an inhibitory mechanism on salivary secretion. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The circumventricular structures and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANGII) on water and electrolyte regulation. Several anatomical findings have demonstrated neural connection between circumventricular structures and the LH, the present experiments were conducted to investigate the role of the alpha-adrenergic antagonists and agonistic injected into the LH on the water intake, sodium and potassium excretion elicited by injections of ANGII into the lateral ventricle (LV), the water intake was measured every 30 min over a period of 120 min. The sodium, potassium and urinary volume were measured over a period of 120 min in water-loaded rats. The injection of ANGII into the LV increased the water intake, which was reduced by previous injection of clonidine (an alpha-2-adrenergic agonist) into the LH. The injection of yohimbine (an alpha-2-adrenergic antagonist) and prazosin (an alpha-l-adrenergic antagonist) into the LH, which was done before injecting ANGII into the LV, also reduced the water intake induced by ANGII. The injection of ANGII into the LV reduced the sodium, potassium and urinary volume. Previous treatment with clonidine attenuated the action of ANGII in reducing the sodium, potassium and urinary volume, whereas previous treatment with yohimbine attenuated the effects of ANGII but with less intensity than that caused by clonidine. Previous treatment with prazosin increased the inhibitory effects of ANGII in those parameters. The injection of yohimbine and prazosin, which was done before the injection of clonidine, attenuated the effect of clonidine on the ANGII mechanism. The results of this study led us to postulate that when alpha-2-adrenergic receptors are blocked, the clonidine may act on the imidazoline receptors to produce its effects on the ANGII mechanism. We may also conclude that the LH is involved with circumventricular structures, which present excitatory and inhibitory mechanisms. Such mechanisms are responsible for regulating the renal excretion of sodium, potassium and water, (C) 2000 Elsevier B.V.
Resumo:
Our studies have focused on the effect of injection of L-NAME and sodium nitroprussiate (SNP) on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine which was injected into the medial septal area (MSA). Rats were anesthetized with urethane (1.25 g/kg b. wt.) and a stainless steel cannula was implanted into their MSA. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into MSA. Injection of pilocarpine (10, 20, 40, 80, 160 mug/mul) into MSA produced a dose-dependent increase in salivary secretion. L-NG-nitro arginine methyl-esther (L-NAME) (40 mug/mul), a nitric oxide (NO) synthase inhibitor, was injected into MSA prior to the injection of pilocarpine into MSA, producing an increase in salivary secretion due to the effect of pilocarpine. Sodium nitroprussiate (SNP) (30 mug/mul) was injected into MSA prior to the injection of pilocarpine into MSA attenuating the increase in salivary secretion induced by pilocarpine. Medial arterial pressure (MAP) increase after injections of pilocarpine into the MSA. L-NAME injected into the MSA prior to injection of pilocarpine into MSA increased the MAP. SNP injected into the MSA prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (40 mug/mul) injected into the MAS induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the MSA increased the urinary sodium excretion and urinary volume induced by pilocarpine. SNP injected prior to pilocarpine into the MSA decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the MSA. We may also conclude that the MSA is involved with the cholinergic excitatory mechanism that induce salivary secretion, increase in MAP and increase in sodium excretion and urinary volume. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to analyze the role of alpha(1),alpha(2)-adrenoceptors, and the effects of losartan and PD123319 (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) injected into the paraventricular nucleus (PVN) on the diuresis, natriuresis, and kaliuresis induced by administration of adrenaline into the medial septal area (MSA). Male Holtzman rats with a stainless steel cannula implanted into the MSA and bilaterally into the PVN were used. The administration of adrenaline into the MSA increased in a dose-dependent manner the urine, sodium, and potassium excretions. The previous administration of prazosin (an alpha(1)-adrenoceptor antagonist) injected into the PVN abolished the above effects of adrenaline, whereas yohimbine (an a-adrenoceptor antagonist) doesn't affect the diuresis, natriuresis, and kaliuresis induced by adrenaline. Pretreatment with losartan into the PVN decreased in a dose-dependent manner the urine, sodium, and potassium excretions induced by MSA administration of adrenaline (50 ng), while PVN PD123319 was without effect. These results indicate that urinary and electrolyte excretion effects induced by adrenaline into the MSA are mediated primarily by PVN AT, receptors. However, the doses of losartan were more effective when combined with the doses of PD123319 than given alone, suggesting that the urinary, natriuretic, and kaliuretic effects of MSA adrenaline may involve activation of multiple angiotensin II receptors subtypes into the PVN. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
In this study we investigated the influence of cu-adrenergic antagonists injections into the paraventricular nucleus (PVN) of the hypothalamus on the thirst and salt appetite, diuresis, natriuresis, and presser effects of angiotensin II (ANG II) stimulation of medial septal area (MSA). ANG II injection into the MSA induced water and sodium intake, diuresis, natriuresis, and presser responses. The previous injection of prazosin (an alpha (1)-adrenergic antagonist) into the PVN abolished, whereas previous administration of yohimbine (an alpha (2)-adrenergic antagonist) into the PVN increased the water and sodium intake, urinary, natriuretic, and presser responses induced by ANG ii injected into the MSA. Previous injection of a nonselective alpha -adrenergic antagonist, regitin, into the PVN blocked the urinary excretion, and reduced the water and sodium intake, sodium intake, and presser responses induced by ANG II injected into the MSA. The present results suggest that alpha -adrenergic pathways involving the PVN are important for the water and sodium excretion, urine and sodium excretion, and presser responses, induced by angiotensinergic activation of the MSA. (C) 2001 Elsevier B.V.
Resumo:
In this study we investigated the effects of the injection into the supraoptic nucleus (SON) of non-peptide AT1- and AT2-angiotensin II (ANG II) receptor antagonists, DuP753 and PD123319, as well as of the arginine-vasopressin (AVP) receptor antagonist d(CH2)5-Tyr(Me)-AVP, on water and 3% NaCl intake induced by the injection of ANG II into the medial septal area (MSA). The effects on water or 3% NaCl intake were assessed in 30-h water-deprived or in 20-h water-deprived furosemide-treated adult male rats, respectively. The drugs were injected in 0.5 µl over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. Antagonists were injected at doses of 20, 80 and 180 nmol. Water and sodium intake was measured over a 2-h period. Previous administration of the AT1 receptor antagonist DuP753 into the SON decreased water (65%, N = 10, P<0.01) and sodium intake (81%, N = 8, P<0.01) induced by the injection of ANG II (10 nmol) into the MSA. Neither of these responses was significantly changed by injection of the AT2-receptor antagonist PD123319 into the SON. on the other hand, while there was a decrease in water intake (45%, N = 9, P<0.01), ANG II-induced sodium intake was significantly increased (70%, N = 8, P<0.01) following injection of the V1-type vasopressin antagonist d(CH2)5-Tyr(Me)-AVP into the SON. These results suggest that both AT1 and V1 receptors within the SON may be involved in water and sodium intake induced by the activation of ANG II receptors within the MSA. Furthermore, they do not support the involvement of MSA AT2 receptors in the mediation of these responses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction. Brain arginine(8)-vasopressin (AVP), through the V-1a- and V-2-receptors, is essential for the maintenance of mean arterial pressure (MAP). Central AVP interacts with the components of the renin-angiotensin system, which participate in MAP regulation. This study all to determine the effects of V-1a-, V-2- and V-1a/V-2-AVP selective antagonists and AT(1)- and AT(2)-angiotensin II (Ang II) selective antagonists on the MAP induced by AVP injected into the medial septal area (MSA) of the brain.Materials and methods. Male Holtzman rats with stainless steel cannulae implanted into the MSA were used in experiments. Direct MAP was recorded in Conscious rats.Results. AVP administration into the MSA caused a prompt and potent pressor response in a dose-dependent fashion. Pretreatment with the V-1a- and V-2-antagonists reduced, whereas prior injection of the V-1a/V-2-antagonist induced a decrease in the MAP that remained below the baseline. Both AT(1)- and AT(2)-antagonists elicited a decrease, While simultaneous injections of two antagonists were more effective in decreasing the MAP induced AVP.Conclusion. These results indicate there is a synergism bell the V-1a- and V-2-AVP, and AT(1)- AT, and AT(2)-Ang II receptors in the MSA in the regulation of MAP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)