202 resultados para LANGERHANS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have challenged the view that Langerhans cells (LCs) constitute the exclusive antigen-presenting cells of the skin and suggest that the dermal dendritic cell (DDC) network is exceedingly complex. Using knockin mice to track and ablate DCs expressing langerin (CD207), we discovered that the dermis contains five distinct DC subsets and identified their migratory counterparts in draining lymph nodes. Based on this refined classification, we demonstrated that the quantitatively minor CD207+ CD103+ DDC subset is endowed with the unique capability of cross-presenting antigens expressed by keratinocytes irrespective of the presence of LCs. We further showed that Y-Ae, an antibody that is widely used to monitor the formation of complexes involving I-Ab molecules and a peptide derived from the I-E alpha chain, recognizes mature skin DCs that express I-Ab molecules in the absence of I-E alpha. Knowledge of this extra reactivity is important because it could be, and already has been, mistakenly interpreted to support the view that antigen transfer can occur between LCs and DDCs. Collectively, these data revisit the transfer of antigen that occurs between keratinocytes and the five distinguishable skin DC subsets and stress the high degree of functional specialization that exists among them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most tissues develop from stem cells and precursors that undergo differentiation as their proliferative potential decreases. Mature differentiated cells rarely proliferate and are replaced at the end of their life by new cells derived from precursors. Langerhans cells (LCs) of the epidermis, although of myeloid origin, were shown to renew in tissues independently from the bone marrow, suggesting the existence of a dermal or epidermal progenitor. We investigated the mechanisms involved in LC development and homeostasis. We observed that a single wave of LC precursors was recruited in the epidermis of mice around embryonic day 18 and acquired a dendritic morphology, major histocompatibility complex II, CD11c, and langerin expression immediately after birth. Langerin+ cells then undergo a massive burst of proliferation between postnatal day 2 (P2) and P7, expanding their numbers by 10–20-fold. After the first week of life, we observed low-level proliferation of langerin+ cells within the epidermis. However, in a mouse model of atopic dermatitis (AD), a keratinocyte signal triggered increased epidermal LC proliferation. Similar findings were observed in epidermis from human patients with AD. Therefore, proliferation of differentiated resident cells represents an alternative pathway for development in the newborn, homeostasis, and expansion in adults of selected myeloid cell populations such as LCs. This mechanism may be relevant in locations where leukocyte trafficking is limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invited Review

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Langerhans cells (LCs) are dendritic cells (DCs) localized in stratified epithelia, such as those overlaying skin, buccal mucosa, and vagina. The contribution of LCs to the promotion or control of immunity initiated at epithelial sites remains debated. We report in this paper that an immunogen comprising OVA linked to the B subunit of cholera toxin, used as delivery vector, was efficient to generate CTLs after vaginal immunization. Using Lang-EGFP mice, we evaluated the contribution of distinct DC subsets to the generation of CD4 and CD8 T cell responses. We demonstrate that the vaginal epithelium, unlike the skin epidermis, includes a minor population of LCs and a major subset of langerin(-) DCs. Intravaginally administered Ag is taken up by LCs and langerin(-) DCs and carried up to draining lymph nodes, where both subsets prime CD8 T cells, unlike blood-derived DCs, although with distinct capabilities. LCs prime CD8 T cells with a cytokine profile dominated by IL-17, whereas Lang(-) DCs induce IFN-gamma-producing T cells. Using Lang-DTR-EGFP mice to ensure a transient ablation of LCs, we found that these cells not only are dispensable for the generation of genital CTL responses but also downregulate these responses, by a mechanism that may involve IL-10 and IL-17 cytokines. This finding has implications for the development of mucosal vaccines and immunotherapeutic strategies designed for the targeting of DCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allergic contact dermatitis is the most frequent occupational disease in industrialized countries. It is caused by CD8(+) T cell-mediated contact hypersensitivity (CHS) reactions triggered at the site of contact by a variety of chemicals, also known as weak haptens, present in fragrances, dyes, metals, preservatives, and drugs. Despite the myriad of potentially allergenic substances that can penetrate the skin, sensitization is relatively rare and immune tolerance to the substance is often induced by as yet poorly understood mechanisms. Here we show, using the innocuous chemical 2,4-dinitrothiocyanobenzene (DNTB), that cutaneous immune tolerance in mice critically depends on epidermal Langerhans cells (LCs), which capture DNTB and migrate to lymph nodes for direct presentation to CD8(+) T cells. Depletion and adoptive transfer experiments revealed that LCs conferred protection from development of CHS by a mechanism involving both anergy and deletion of allergen-specific CD8(+) T cells and activation of a population of T cells identified as ICOS(+)CD4(+)Foxp3(+) Tregs. Our findings highlight the critical role of LCs in tolerance induction in mice to the prototype innocuous hapten DNTB and suggest that strategies targeting LCs might be valuable for prevention of cutaneous allergy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Langerhans cells (LC) are the principal dendritic cell (DC) population in the epidermis of the skin. Owing to their prominent position at the environmental barrier, LC have long been considered to be prototypic sentinel DC. More recently, the precise role of LC in the initiation and control of cutaneous immune responses has become debatable. To elucidate their contribution to immune regulation in the skin, our laboratories have generated genetically modified mice in which LC can be followed in situ by expression of enhanced green fluorescent protein and can be either inducibly or constitutively depleted in vivo. This review highlights the similarities and differences between these mouse models, discusses the discovery and functional significance of Langerin(+) dermal DC, and examines some recent data that help to shed light on LC function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) of the skin play an important role in skin-mediated immunity capable of promoting potent immune responses. We availed of polymeric dissolving microneedle (MN) arrays laden with nano-encapsulated antigen to specifically target skin DC networks. This modality of immunization represents an economic, efficient and potent means of antigen delivery directly to skin DCs, which are inefficiently targeted by more conventional immunization routes. Following MN immunization, Langerhans cells (LCs) constituted the major skin DC subset capable of cross-priming antigen-specific CD8(+) T cells ex-vivo. While all DC subsets were equally efficient in priming CD4(+) T cells, LCs were largely responsible for orchestrating the differentiation of CD4(+) IFN-γ and IL-17 producing effectors. Importantly, depletion of LCs prior to immunization had a profound effect on CD8(+) CTL responses in vivo, and vaccinated animals displayed reduced protective anti-tumour and viral immunity. Interestingly, this cross-priming bias was lost following MN immunization with soluble antigen, suggesting that processing and cross-presentation of nano-particulate antigen is favoured by LCs. Therefore, these studies highlight the importance of LCs in skin immunization strategies and that targeting of nano-particulate immunogens through dissolvable polymeric MNs potentially provides a promising technological platform for improved vaccination strategies.Journal of Investigative Dermatology accepted article preview online, 22 September 2014. doi:10.1038/jid.2014.415.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient formation of early GCs depends on the close interaction between GC B cells and antigen-primed CD4+ follicular helper T cells (TFH). A tight and stable formation of TFH/B cell conjugates is required for cytokine-driven immunoglobulin class switching and somatic hypermutation of GC B cells. Recently, it has been shown that the formation of TFH/B cell conjugates is crucial for B-cell differentiation and class switch following infection with Leishmania major parasites. However, the subtype of DCs responsible for TFH-cell priming against dermal antigens is thus far unknown. Utilizing a transgenic C57BL/6 mouse model designed to trigger the ablation of Langerin+ DC subsets in vivo, we show that the functionality of TFH/B cell conjugates is disturbed after depletion of Langerhans cells (LCs): LC-depleted mice show a reduction in somatic hypermutation in B cells isolated from TFH/B cell conjugates and markedly reduced GC reactions within skin-draining lymph nodes. In conclusion, this study reveals an indispensable role for LCs in promoting GC B-cell differentiation following cutaneous infection with Leishmania major parasites. We propose that LCs are key regulators of GC formation and therefore have broader implications for the development of allergies and autoimmunity as well as for future vaccination strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The predominant clinical and radiological features of Langerhans' cell histiocytosis (LCH) in children are due to osseous involvement. Extra-osseous disease is far less common, occurring in association with bone disease or in isolation; nearly all anatomical sites may be affected and in very various combinations. The following article is based on a multicentre review of 31 children with extra-osseous LCH. The objective is to summarise the diverse possibilities of organ involvement. The radiological manifestations using different imaging modalities are rarely pathognomonic on their own. Nevertheless, familiarity with the imaging findings, especially in children with systemic disease, may be essential for early diagnosis.