228 resultados para LACTOCOCCUS LACTIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Doctor en Ciencias con Especialidad en Microbiología) UANL, 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactic acid bacteria (LAB) are an attractive and safe alternative for the expression of heterologous proteins, as they are nonpathogenic and endotoxin-free organisms. Lactococcus lactis, the LAB model organism, has been extensively employed in the biotechnology field for large-scale production of heterologous proteins, and its use as a "cell factory" has been widely studied. We have been particularly interested in the use of L. lactis for production of heat shock proteins (HSPs), which reportedly play important roles in the initiation of innate and adaptive immune responses. However, this activity has been questioned, as LPS contamination appears to be responsible for most, if not all, immunostimulatory activity of HSPs. In order to study the effect of pure HSPs on the immune system, we constructed recombinant L. lactis strains able to produce and properly address the Mycobacterium leprae 65-kDa HSP (Hsp65) to the cytoplasm or to the extracellular medium, using a xylose-induced expression system. Approximately 7 mg/L recombinant Hsp65 was secreted. Degradation products related to lactococcal HtrA activity were not observed, and the Limulus amebocyte lysate assay demonstrated that the amount of LPS in the recombinant Hsp65 preparations was 10-100 times lower than the permitted levels established by the U. S. Food and Drug Administration. These new L. lactis strains will allow investigation of the effects of M. leprae Hsp65 without the interference of LPS; consequently, they have potential for a variety of biotechnological, medical and therapeutic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anderson MIYOSHI, Daniela FREITAS, Luciana RIBEIRO, Jane E. GABRIEL, Sophie LECLERCQ, Maricê N. OLIVEIRA, and Valeria D. GUIMARÃES were recipients of a CAPES fellowship (project CAPESCOFECUB #319II). Luis BERMUDEZ and Sébastien NOUAILLE were recipients of a fellowship from the French Ministry of Education and Research. INRA and Région IledeFrance also financed L. BERMUDEZ and V. GUIMARAES. Cathy CHARLIER is recipient of a fellowship from INRA and Région Bretagne.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactococcus lactis IL1403 is a lactic acid bacterium that is used widely for food fermentation. Copper homeostasis in this organism chiefly involves copper secretion by the CopA copper ATPase. This enzyme is under the control of the CopR transcriptional regulator. CopR not only controls its own expression and that of CopA, but also that of an additional three operons and two monocistronic genes. One of the genes under the control of CopR, yahD, encodes an α/β-hydrolase. YahD expression was induced by copper and cadmium, but not by other metals or oxidative or nitrosative stress. The three-dimensional structure of YahD was determined by X-ray crystallography to a resolution of 1.88 Å. The protein was found to adopt an α/β-hydrolase fold with the characteristic Ser-His-Asp catalytic triad. Functional testing of YahD for a wide range of substrates for esterases, lipases, epoxide hydrolases, phospholipases, amidases and proteases was, however, unsuccessful. A copper-inducible serine hydrolase has not been described previously and YahD appears to be a new functional member of this enzyme family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Lactococcus lactis IL1403, 14 genes are under the control of the copper-inducible CopR repressor. This so-called CopR regulon encompasses the CopR regulator, two putative CPx-type copper ATPases, a copper chaperone, and 10 additional genes of unknown function. We addressed here the function of one of these genes, ytjD, which we renamed cinD (copper-induced nitroreductase). Copper, cadmium, and silver induced cinD in vivo, as shown by real-time quantitative PCR. A knockout mutant of cinD was more sensitive to oxidative stress exerted by 4-nitroquinoline-N-oxide and copper. Purified CinD is a flavoprotein and reduced 2,6-dichlorophenolindophenol and 4-nitroquinoline-N-oxide with k(cat) values of 27 and 11 s(-1), respectively, using NADH as a reductant. CinD also exhibited significant catalase activity in vitro. The X-ray structure of CinD was resolved at 1.35 A and resembles those of other nitroreductases. CinD is thus a nitroreductase which can protect L. lactis against oxidative stress that could be exerted by nitroaromatic compounds and copper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactococcus lactis cannot synthesize haem, but when supplied with haem, expresses a cytochrome bd oxidase. Apart from the cydAB structural genes for this oxidase, L. lactis features two additional genes, hemH and hemW (hemN), with conjectured functions in haem metabolism. While it appears clear that hemH encodes a ferrochelatase, no function is known for hemW. HemW-like proteins occur in bacteria, plants and animals, and are usually annotated as CPDHs (coproporphyrinogen III dehydrogenases). However, such a function has never been demonstrated for a HemW-like protein. We here studied HemW of L. lactis and showed that it is devoid of CPDH activity in vivo and in vitro. Recombinantly produced, purified HemW contained an Fe-S (iron-sulfur) cluster and was dimeric; upon loss of the iron, the protein became monomeric. Both forms of the protein covalently bound haem b in vitro, with a stoichiometry of one haem per monomer and a KD of 8 μM. In vivo, HemW occurred as a haem-free cytosolic form, as well as a haem-containing membrane-associated form. Addition of L. lactis membranes to haem-containing HemW triggered the release of haem from HemW in vitro. On the basis of these findings, we propose a role of HemW in haem trafficking. HemW-like proteins form a distinct phylogenetic clade that has not previously been recognized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactococcus lactis IL1403, a lactic acid bacterium widely used for food fermentation, is often exposed to stress conditions. One such condition is exposure to copper, such as in cheese making in copper vats. Copper is an essential micronutrient in prokaryotes and eukaryotes but can be toxic if in excess. Thus, copper homeostatic mechanisms, consisting chiefly of copper transporters and their regulators, have evolved in all organisms to control cytoplasmic copper levels. Using proteomics to identify novel proteins involved in the response of L. lactis IL1403 to copper, cells were exposed to 200 muM copper sulfate for 45 min, followed by resolution of the cytoplasmic fraction by two-dimensional gel electrophoresis. One protein strongly induced by copper was LctO, which was shown to be a NAD-independent lactate oxidase. It catalyzed the conversion of lactate to pyruvate in vivo and in vitro. Copper, cadmium, and silver induced LctO, as shown by real-time quantitative PCR. A copper-regulatory element was identified in the 5' region of the lctO gene and shown to interact with the CopR regulator, encoded by the unlinked copRZA operon. Induction of LctO by copper represents a novel copper stress response, and we suggest that it serves in the scavenging of molecular oxygen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactococcus lactis IL1403 is a Gram-positive bacterium of great biotechnological interest for food grade applications. Its use is however hampered by the difficulty to efficiently transform this strain. We here describe a detailed, optimized electrotransformation protocol which yields a transformation efficiency of 10(6) cfu/microg of DNA with the two E. coli Gram-positive shuttle vectors pC3 and pVA838. The utility of the protocol was demonstrated by the generation of single- and double-knock-out mutants by homologous recombination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify components of the copper homeostatic mechanism of Lactococcus lactis, we employed two-dimensional gel electrophoresis to detect changes in the proteome in response to copper. Three proteins upregulated by copper were identified: glyoxylase I (YaiA), a nitroreductase (YtjD), and lactate oxidase (LctO). The promoter regions of these genes feature cop boxes of consensus TACAnnTGTA, which are the binding site of CopY-type copper-responsive repressors. A genome-wide search for cop boxes revealed 28 such sequence motifs. They were tested by electrophoretic mobility shift assays for the interaction with purified CopR, the CopY-type repressor of L. lactis. Seven of the cop boxes interacted with CopR in a copper-sensitive manner. They were present in the promoter region of five genes, lctO, ytjD, copB, ydiD, and yahC; and two polycistronic operons, yahCD-yaiAB and copRZA. Induction of these genes by copper was confirmed by real-time quantitative PCR. The copRZA operon encodes the CopR repressor of the regulon; a copper chaperone, CopZ; and a putative copper ATPase, CopA. When expressed in Escherichia coli, the copRZA operon conferred copper resistance, suggesting that it functions in copper export from the cytoplasm. Other member genes of the CopR regulon may similarly be involved in copper metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CopR of Lactococcus lactis is a copper-responsive repressor involved in copper homoeostasis. It controls the expression of a total of 11 genes, the CopR regulon, in a copper-dependent manner. In the absence of copper, CopR binds to the promoters of the CopR regulon. Copper releases CopR from the promoters, allowing transcription of the downstream genes to proceed. CopR binds through its N-terminal domain to a 'cop box' of consensus TACANNTGTA, which is conserved in Firmicutes. We have solved the NMR solution structure of the N-terminal DNA-binding domain of CopR. The protein fold has a winged helix structure resembling that of the BlaI repressor which regulates antibiotic resistance in Bacillus licheniformis. CopR differs from other copper-responsive repressors, and the present structure represents a novel family of copper regulators, which we propose to call the CopY family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mdt(A) gene, previously designated mef214, from Lactococcus lactis subsp. lactis plasmid pK214 encodes a protein [Mdt(A) (multiple drug transporter)] with 12 putative transmembrane segments (TMS) that contain typical motifs conserved among the efflux proteins of the major facilitator superfamily. However, it also has two C-motifs (conserved in the fifth TMS of the antiporters) and a putative ATP-binding site. Expression of the cloned mdt(A) gene decreased susceptibility to macrolides, lincosamides, streptogramins, and tetracyclines in L. lactis and Escherichia coli, but not in Enterococcus faecalis or in Staphylococcus aureus. Glucose-dependent efflux of erythromycin and tetracycline was demonstrated in L. lactis and in E. coli.