1000 resultados para Kunjin Virus


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective To develop and validate specific, sensitive and rapid diagnostic tests using RT-PCR for the detection of Ross River virus (RRV), Kunjin virus (KV) and Murray Valley encephalitis virus (MVEV) infections in horses. Methods Primer sets based on nucleotide sequence encoding the envelope glycoprotein E2 of RRV and on the nonstructural protein 5 (NS5) of KV and MVEV were designed and used in single round PCRs to test for the respective viruses in infected cell cultures and, in the case of RRV, in samples of horse blood and synovial fluid. Results The primer pairs designed for each of the three viruses amplified a product of expected size from prototype viruses that were grown in cell culture. The identity of each of the products was confirmed by nucleotide sequencing indicating that in the context used the RT-PCRs were specific. RRV was detected in serums from 8 horses for which there were clinical signs consistent with RRV infection such that an acute-phase serum sample was taken and submitted for RRV serology testing. The RRV RT-PCR was analytically sensitive in that it was estimated to detect as little as 50 TCID50 of RRV per mL of serum and was specific in that the primer pairs did not amplify other products from the 8 serum samples. The RRV primers also detected virus in three independent mosquito pools known to contain RRV by virus isolation in cell culture. Samples from horses suspected to be infected with KV and MVEV were not available. Conclusion Despite much anecdotal and serological evidence for infection of horses with RRV actual infection and associated clinical disease are infrequently confirmed. The availability of a specific and analytically sensitive RT-PCR for the detection of RRV provides additional opportunities to confirm the presence of this virus in clinical samples. The RTPCR primers for the diagnosis of KV and MVEV infections were shown to be specific for cell culture grown viruses but the further validation of these tests requires the availability of appropriate clinical samples from infected horses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interferon (IFN) response is the first line of defense against viral infections, and the majority of viruses have developed different strategies to counteract IFN responses in order to ensure their survival in an infected host. In this study, the abilities to inhibit IFN signaling of two closely related West Nile viruses, the New York 99 strain (NY99) and Kunjin virus (KUN), strain MRM61C, were analyzed using reporter plasmid assays, as well as immunofluorescence and Western blot analyses. We have demonstrated that infections with both NY99 and KUN, as well as transient or stable transfections with their replicon RNAs, inhibited the signaling of both alpha/beta IFN (IFN-alpha/beta) and gamma IFN (IFN-gamma) by blocking the phosphorylation of STAT1 and its translocation to the nucleus. In addition, the phosphorylation of STAT2 and its translocation to the nucleus were also blocked by KUN, NY99, and their replicons in response to treatment with IFN-alpha. IFN-alpha signaling and STAT2 translocation to the nucleus was inhibited when the KUN nonstructural proteins NS2A, NS2B, NS3, NS4A, and NS4B, but not NS1 and NS5, were expressed individually from the pcDNA3 vector. The results clearly demonstrate that both NY99 and KUN inhibit IFN signaling by preventing STAT1 and STAT2 phosphorylation and identify nonstructural proteins. responsible for this inhibition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

West Nile virus (WNV) is a mosquito-borne flavivirus that is emerging as a global pathogen. In the last decade, virulent strains of the virus have been associated with significant outbreaks of human and animal disease in Europe, the Middle East and North America. Efforts to develop human and veterinary vaccines have taken both traditional and novel approaches. A formalin-inactivated whole virus vaccine has been approved for use in horses. DNA vaccines coding for the structural WNV proteins have also been assessed for veterinary use and have been found to be protective in mice, horses and birds. Live attenuated yellow fever WNV chimeric vaccines have also been successful in animals and are currently undergoing human trials. Additional studies have shown that immunisation with a relatively benign Australian variant of WNV, the Kunjin virus, also provides protective immunity against the virulent North American strain. Levels of efficacy and safety, as well as logistical, economic and environmental issues, must all be carefully considered before vaccine candidates are approved and selected for large-scale manufacture and distribution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Adult mosquitoes (Diptera: Culicidae) were collected in January and February 2000 from Saibai Island in the Torres Strait of northern Australia, and processed for arbovirus isolation during a period of Japanese encephalitis (JE) virus activity on nearby Badu Island. A total of 84 2 10 mosquitoes were processed for virus isolation, yielding six flavivirus isolates. Viruses obtained were single isolates of JE and Kokobera (KOK) and four of Kunjin (KUN). All virus isolates were from members of the Culex sitiens Weidemann subgroup, which comprised 53.1 % of mosquitoes processed. Nucleotide sequencing and phylogenetic analysis of the pre-membrane region of the genome of JE isolate TS5313 indicated that it was closely related to other isolates from a sentinel pig and a pool of Cx. gelidus Theobald from Badu Island during the same period. Also molecular analyses of part of the envelope gene of KUN virus isolates showed that they were closely related to other KUN virus strains from Cape York Peninsula. The results indicate that flaviviruses are dynamic in the area, and suggest patterns of movement south from New Guinea and north from the Australian mainland.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Infection of humans with the West Nile flavivirus principally occurs via tick and mosquito bites. Here, we document the expression of antigen processing and presentation molecules in West Nile virus (WNV)-infected human skin fibroblast (HFF) cells. Using a new Flavivirus-specific antibody, 4G4, we have analyzed cell surface human leukocyte antigen (HLA) expression on virus-infected cells at a single cell level. Using this approach, we show that West Nile Virus infection alters surface HLA expression on both infected HFF and neighboring uninfected HFF cells. Interestingly, increased surface HLA evident on infected HFF cultures is almost entirely due to virus-induced interferon (IFN)alpha/beta because IFNalpha/beta-neutralizing antibodies completely prevent increased surface HLA expression. In contrast, RT-PCR analysis indicates that WNV infection results in increased mRNAs for HLA-A, -B, and -C genes, and HLA-associated molecules low molecular weight polypeptide-2 (LMP-2) and transporter associated with antigen presentation-1 (TAP-1), but induction of these mRNAs is not diminished in HFF cells cultured with IFNalpha/beta-neutralizing antibodies. Taken together, these data support the idea that that both cytokine-dependent and cytokine-independent mechanisms account for WNV-induced HLA expression in human skin fibroblasts. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

All single-stranded 'positive-sense' RNA viruses that infect mammalian, insect or plant cells rearrange internal cellular membranes to provide an environment facilitating virus replication. A striking feature of these unique membrane structures is the induction of 70-100 nm vesicles (either free within the cytoplasm, associated with other induced vesicles or bound within a surrounding membrane) harbouring the viral replication complex (RC). Although similar in appearance, the cellular composition of these vesicles appears to vary for different viruses, implying different organelle origins for the intracellular sites of viral RNA replication. Genetic analysis has revealed that induction of these membrane structures can be attributed to a particular viral gene product, usually a non-structural protein. This review will highlight our current knowledge of the formation and composition of virus RCs and describe some of the similarities and differences in RNA-membrane interactions observed between the virus families Flaviviridae and Picornaviridae.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transient expression of Ebola virus (EBOV) glycoprotein GP causes downregulation of surface proteins, cell rounding and detachment, a phenomenon believed to play a central role in the pathogenicity of the virus. In this study, evidence that moderate expression of GP does not result in such morphological changes was provided. It was shown that GP continuously produced in 293T cells from the Kunjin virus replicon was correctly processed and transported to the plasma membrane without affecting the surface expression of beta 1 and alpha 5 integrins and major histocompatibility complex I molecules. The level of GIP expression in Kunjin replicon GP-expressing cells was similar to that observed in cells infected with EBOV early in infection and lower than that produced in cells transfected with plasmid DNA, phCMV-GP(1) expressing GP from a strong promoter. Importantly, transient transfection of Kunjin replicon GIP-expressing cells with GIP-coding plasmid DNA resulted in overexpression of GP, which lead to the downregulation of surface molecules and massive rounding and detachment of transfected cells. Here, it was also demonstrated that cell rounding and downregulation of the surface markers are the late events in EBOV infection, whereas synthesis and massive release of virus particles occur at early steps and do not cause significant cytotoxic effects. These findings indicate that the synthesis of EBOV GP in virus-infected cells is controlled well by several mechanisms that do not allow GP overexpression and hence the early appearance of its cytotoxic properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS213-34A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A possible role in RNA replication for interactions between conserved complementary (cyclization) sequences in the 5'- and 3'-terminal regions of Flavivirus RNA was previously suggested but never tested in vivo. Using the M-fold program for RNA secondary-structure predictions, we examined for the first time the base-pairing interactions between the covalently linked 5' genomic region (first similar to 160 nucleotides) and the 3' untranslated region (last similar to 115 nucleotides) for a range of mosquito borne Flavivirus species. Base-pairing occurred as predicted for the previously proposed conserved cyclization sequences. In order to obtain experimental evidence of the predicted interactions, the putative cyclization sequences (5' or 3') in the replicon RNA of the mosquito-borne Kunjin virus,were mutated either separately, to destroy base-pairing, or simultaneously, to restore the complementarity. None of the RNAs with separate mutations in only the 5' or only the 3' cyclization sequences was able to replicate after transfection into BHK cells, while replicon RNA with simultaneous compensatory mutations in both cyclization sequences was replication competent. This was detected by immunofluorescence for expression of the major nonstructural protein NS3 and by Northern blot analysis for amplification and accumulation of replicon RNA. We then used the M-fold program to analyze RNA secondary structure of the covalently linked 5'- and 3'-terminal regions of three tick borne virus species and identified a previously undescribed additional pair of conserved complementary sequences in locations similar to those of the mosquito borne species. They base-paired with DeltaG values of approximately -20 kcal, equivalent or greater in stability than those calculated for the originally proposed cyclization sequences. The results show that the base-pairing between 5' and 3' complementary sequences, rather than the nucleotide sequence per se, is essential for the replication of mosquito-borne Kunjin virus RNA and that more than one pair of cyclization sequences might be involved in the replication of the tick-borne Flavivirus species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Point mutations that resulted in a substitution of the conserved 3'-penultimate cytidine in genomic RNA or the RNA negative strand of the self-amplifying replicon of the Flavivirus Kunjin virus completely blocked in vivo replication. Similarly, substitutions of the conserved 3'-terminal uridine in the RNA negative or positive strand completely blocked replication or caused much-reduced replication, respectively. The same preference for cytidine in the 3'-terminal dinucleotide was noted in reports of the in vitro activity of the RNA-dependent RNA polymerase (RdRp) for the other genera of Flaviviridae that also employ a double-stranded RNA (dsRNA) template to initiate asymmetric semiconservative RNA positive-strand synthesis. The Kunjin virus replicon results were interpreted in the context of a proposed model for initiation of RNA synthesis based on the solved crystal structure of the RdRp of phi6 bacteriophage, which also replicates efficiently using a dsRNA template with conserved 3'-penultimate cytidines and a 3'-terminal pyrimidine. A previously untested substitution of the conserved pentanucleotide at the top of the 3'-terminal stem-loop of all Flavivirus species also blocked detectable in vivo replication of the Kunjin virus replicon RNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After the 1st appearance of Japanese encephalitis virus (JE) on mainland Australia in 1998, a study was undertaken to investigate whether JE had become established in enzootic transmission cycles on western Cape York Peninsula. Adult mosquitoes were collected during the late wet season from Kowanyama and Pormpuraaw in April 1999, and Pormpuraaw and Barr's Yard in April 2000. Despite processing 269,270 mosquitoes for virus isolation, no isolates of JE were obtained. However, other flaviviruses comprising Murray Valley encephalitis virus, Kunjin virus, Alfuy virus, and Kokobera virus (KOK) were isolated. Isolates of the alphaviruses Ross River virus, Barmah Forest virus (BF), and Sindbis virus (SIN) also were obtained. The majority (88%) of isolates were from members of the Culex sitiens subgroup. Single isolates of KOK, BF and SIN were obtained from Ochlerotatus vigilax, Oc. normanensis, and Anopheles bancroftii, respectively. The isolations of flaviviruses during the late wet season indicate that conditions were suitable for flavivirus activity in the area. No evidence was found to suggest that JE has become established in enzootic transmission cycles on western Cape York, although study sites and field trips were limited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have previously developed replicon vectors derived from the Australian flavivirus Kunjin that have a unique noncytopathic nature and have been shown to direct prolonged high-level expression of encoded heterologous genes in vitro and in vivo and to induce strong and long-lasting immune responses to encoded immunogens in mice. To facilitate further applications of these vectors in the form of virus-like particles (VLPs), we have now generated a stable BHK packaging cell line, tetKUNCprME, carrying a Kunjin structural gene cassette under the control of a tetracycline-inducible promoter. Withdrawal of tetracycline from the medium resulted in production of Kunjin structural proteins that were capable of packaging transfected and self-amplified Kunjin replicon RNA into the secreted VLPs at titers of up to 1.6 x 10(9) VLPs per ml. Furthermore, secreted KUN replicon VLPs from tetKUNCprME cells could be harvested continuously for as long as 10 days after RNA transfection, producing a total yield of more than 1010 VLPs per 106 transfected cells. Passaging of VLPs on Vero cells or intracerebral injection into 2- to 4-day-old suckling mice illustrated the complete absence of any infectious Kunjin virus. tetKUNCprME cells were also capable of packaging replicon RNA from closely and distantly related flaviviruses, West Nile virus and dengue virus type 2, respectively. The utility of high-titer KUN replicon VLPs was demonstrated by showing increasing CD8(+)-T-cell responses to encoded foreign protein with increasing doses of KUN VLPs. A single dose of 2.5 x 10(7) VLPs carrying the human respiratory syncytial virus M2 gene induced 1,400 CD8 T cells per 10(6) splenocytes in an ex vivo gamma interferon enzyme-linked immunospot assay. The packaging cell line thus represents a significant advance in the development of the noncytopathic Kunjin virus replicon-based gene expression system and may be widely applicable to the basic studies of flavivirus RNA packaging and virus assembly as well as to the development of gene expression systems based on replicons from different flaviviruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alfuy virus (ALFV) is classified as a subtype of the flavivirus Murray Valley encephalitis virus (MVEV); however, despite preliminary reports of antigenic and ecological similarities with MVEV, ALFV has not been associated with human disease. Here, it was shown that ALFV is at least 10(4)-fold less neuroinvasive than MVEV after peripheral inoculation of 3-week-old Swiss outbred mice, but ALFV demonstrates similar neurovirulence. In addition, it was shown that ALFV is partially attenuated in mice that are deficient in alpha/beta interferon responses, in contrast to MVEV which is uniformly lethal in these mice. To assess the antigenic relationship between these viruses, a panel of monoclonal antibodies was tested for the ability to bind to ALFV and MVEV in ELISA. Although the majority of monoclonal antibodies recognized both viruses, confirming their antigenic similarity, several discriminating antibodies were identified. Finally, the entire genome of the prototype strain of ALFV (MRM3929) was sequenced and phylogenetically analysed. Nucleotide (73%) and amino acid sequence (83 %) identity between ALFV and IMVEV confirmed previous reports of their close relationship. Several nucleotide and amino acid deletions and/or substitutions with putative functional significance were identified in ALFV, including the abolition of a conserved glycosylation site in the envelope protein and the deletion of the terminal dinucleotide 5'-CUOH-3' found in all other members of the genus. These findings confirm previous reports that ALFV is closely related to IMVEV, but also highlights significant antigenic, genetic and phenotypic divergence from MVEV. Accordingly, the data suggest that ALFV is a distinct species within the serogroup Japanese encephalitis virus.