866 resultados para Knee injuries
Resumo:
Hamstring strain injuries (HSIs) are common in a number of sports and incidence rates have not declined in recent times. Additionally, the high rate of recurrent injuries suggests that our current understanding of HSI and re-injury risk is incomplete. Whilst the multifactoral nature of HSIs is agreed upon by many, often individual risk factors and/or causes of injury are examined in isolation. This review aims to bring together the causes, risk factors and interventions associated with HSIs to better understand why HSIs are so prevalent. Running is often identified as the primary activity type for HSIs and given the high eccentric forces and moderate muscle strain placed on the hamstrings during running these factors are considered to be part of the aetiology of HSIs. However, the exact causes of HSIs remain unknown and whilst eccentric contraction and muscle strain purportedly play a role, accumulated muscle damage and/or a single injurious event may also contribute. Potentially, all of these factors interact to varying degrees depending on the injurious activity type (i.e. running, kicking). Furthermore, anatomical factors, such as the biarticular organization, the dual innervations of biceps femoris (BF), fibre type distribution, muscle architecture and the degree of anterior pelvic tilt, have all been implicated. Each of these variables impact upon HSI risk via a number of different mechanisms that include increasing hamstring muscle strain and altering the susceptibility of the hamstrings to muscle damage. Reported risk factors for HSIs include age, previous injury, ethnicity, strength imbalances, flexibility and fatigue. Of these, little is known, definitively, about why previous injury increases the risk of future HSIs. Nevertheless, interventions put in place to reduce the incidence of HSIs by addressing modifiable risk factors have focused primarily on increasing eccentric strength, correcting strength imbalances and improving flexibility. The response to these intervention programmes has been mixed with varied levels of success reported. A conceptual framework is presented suggesting that neuromuscular inhibition following HSIs may impede the rehabilitation process and subsequently lead to maladaptation of hamstring muscle structure and function, including preferentially eccentric weakness, atrophy of the previously injured muscles and alterations in the angle of peak knee flexor torque. This remains an area for future research and practitioners need to remain aware of the multifactoral nature of HSIs if injury rates are to decline.
Resumo:
INTRODUCTION: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is often greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. AIM: To determine if this preferential eccentric decline in strength is caused by declines in voluntary hamstring muscle activation. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±1800.s-1 and ±600.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused greater eccentric (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) than concentric knee flexor weakness (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, voluntary activation levels of the lateral hamstrings showed a significant decline (0.08%; 95% CI = 0.045 to 0.120; P<0.0001). In comparison, medial hamstring activation showed no change following intermittent running. CONCLUSION: Eccentric hamstring strength is decreased significantly following intermittent overground running. Voluntary activation deficits in the biceps femoris muscle are responsible for some portion of this weakness. The implications of this finding are significant because the biceps femoris muscle is the most frequently strained of all the hamstring muscles and because fatigue appears to play an important part in injury occurrence.
Resumo:
Introduction: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is sometimes greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. The purpose of this research was to determine whether declines in knee flexor strength following overground repeat sprints are caused by declines in voluntary activation of the hamstring muscles. Methods: Seventeen recreationally active males completed 3 sets of 6 by 20m overground sprints. Maximal isokinetic concentric and eccentric knee flexor and concentric knee extensor strength was determined at ±1800.s-1 and ±600.s-1 while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. Results: Overground repeat sprint running resulted in a significant decline in eccentric knee flexor strength (31.1 Nm; 95% CI = 21.8 to 40.3 Nm; p < 0.001). However, concentric knee flexor strength was not significantly altered (11.1 Nm; 95% CI= -2.8 to 24.9; p=0.2294). Biceps femoris voluntary activation levels displayed a significant decline eccentrically (0.067; 95% CI=0.002 to 0.063; p=0.0325). However, there was no significant decline concentrically (0.025; 95% CI=-0.018 to 0.043; p=0.4243) following sprinting. Furthermore, declines in average peak torque at -1800.s-1 could be explained by changes in hamstring activation (R2 = 0.70). Moreover, it was change in the lateral hamstring muscle activity that was related to the decrease in knee flexor torque (p = 0.0144). In comparison, medial hamstring voluntary activation showed no change for either eccentric (0.06; 95% CI = -0.033 to 0.102; p=0.298) or concentric (0.09; 95% CI = -0.03 to 0.16; p=0.298) muscle actions following repeat sprinting. Discussion: Eccentric hamstring strength is decreased significantly following overground repeat sprinting. Voluntary activation deficits in the biceps femoris muscle explain a large portion of this weakness. The implications of these findings are significant as the biceps femoris muscle is the most frequently strained of the knee flexors and fatigue is implicated in the aetiology of this injury.
Resumo:
Background: Hamstring strain injuries (HSI) are prevalent in sport and re-injury rates have been high for many years. Maladaptation following HSI are implicated in injury recurrence however nervous system function following HSI has received little attention. Aim: To determine if recreational athletes with a history of unilateral HSI, who have returned to training and competition, will exhibit lower levels of voluntary activation (VA) and median power frequency (MPF) in the previously injured limb compared to the uninjured limb at long muscle lengths. Methods: Twenty-eight recreational athletes were recruited. Of these, 13 athletes had a history of unilateral HSI and 15 had no history of HSI. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during concentric and eccentric contractions at ± 180 and ± 60deg/s. Results: The previously injured limb was weaker at all contraction speeds compared to the uninjured limb (+180deg/s mean difference(MD) = 9.3Nm, p = 0.0036; +60deg/s MD = 14.0Nm, p = 0.0013; -60deg/s MD = 18.3Nm, p = 0.0007; -180deg/s MD = 20.5Nm, p = 0.0007) whilst VA was only lower in the biceps femoris long head during eccentric contractions (-60deg/s MD = 0.13, p = 0.0025; -180deg/s MD = 0.13, p = 0.0003). There were no between limb differences in medial hamstring VA or MPF from either biceps femoris long head or medial hamstrings in the injured group. The uninjured group showed no between limb differences with any of the tested variables. Conclusion: Previously injured hamstrings were weaker than the contralateral uninjured hamstring at all tested speeds and contraction modes. During eccentric contractions biceps femoris long head VA was lower in the previously injured limb suggesting neural control of biceps femoris long head may be altered following HSI. Current rehabilitation practices have been unsuccessful in restoring strength and VA following HSI. Restoration of these markers should be considered when determining the success of rehabilitation from HSI. Further investigations are required to elucidate the full impact of lower levels of biceps femoris long head VA following HSI on rehabilitation outcomes and re-injury risk.
Resumo:
Context: Various epidemiological studies have estimated that up to 70% of runners sustain an overuse running injury each year. Although few overuse running injuries have an established cause, more than 80% of running-related injuries occur at or below the knee, which suggests that some common mechanisms may be at work. The question then becomes, are there common mechanisms related to overuse running injuries? Evidence Acquisition: Research studies were identified via the following electronic databases: MEDLINE, EMBASE PsycInfo, and CINAHL (1980–July 2008). Inclusion was based on evaluation of risk factors for overuse running injuries. Results: A majority of the risk factors that have been researched over the past few years can be generally categorized into 2 groups: atypical foot pronation mechanics and inadequate hip muscle stabilization. Conclusion: Based on the review of literature, there is no definitive link between atypical foot mechanics and running injury mechanisms. The lack of normative data and a definition of typical foot structure has hampered progress. In contrast, a large and growing body of literature suggests that weakness of hip-stabilizing muscles leads to atypical lower extremity mechanics and increased forces within the lower extremity while running.
Resumo:
OBJECTIVE: Despite recent increases in the volume of research in professional rugby union, there is little consensus on the epidemiology of injury in adolescent players. We undertook a systematic review to determine the incidence, severity, and nature of injury in adolescent rugby union players.
DATA SOURCES: In April 2009, we performed a computerized literature search on PubMed, Embase, and Cochrane Controlled Trials Register (via Ovid). Population-specific and patient-specific search terms were combined in the form of MEDLINE subject headings and key words (wound$ and injur$, rugby, adolescent$). These were supplemented with related-citation searches on PubMed and bibliographic tracking of primary and review articles.
STUDY SELECTION: Prospective epidemiologic studies in adolescent rugby union players.
DATA SYNTHESIS: A total of 15 studies were included, and the data were analyzed descriptively. Two independent reviewers extracted key study characteristics regarding the incidence, severity, and nature of injuries and the methodologic design.
CONCLUSIONS: Wide variations existed in the injury definitions and data collection procedures. The incidence of injury necessitating medical attention varied with the definition, from 27.5 to 129.8 injuries per 1000 match hours. The incidence of time-loss injury (>7 days) ranged from 0.96 to 1.6 per 1000 playing hours and from 11.4/1000 match hours (>1 day) to 12-22/1000 match hours (missed games). The highest incidence of concussion was 3.3/1000 playing hours. No catastrophic injuries were reported. The head and neck, upper limb, and lower limb were all common sites of injury, and trends were noted toward greater time loss due to upper limb fractures or dislocations and knee ligament injuries. Increasing age, the early part of the playing season, and the tackle situation were most closely associated with injury. Future injury-surveillance studies in rugby union must follow consensus guidelines to facilitate interstudy comparisons and provide further clarification as to where injury-prevention strategies should be focused.
Resumo:
Objective. - To describe the distribution of frequency of the injuries during adventure competition.Material and methods. - Fifty-five participants who underwent to the second stage of the Caloi Adventure Camp competition answered to a questionnaire about their personal characteristics, training status and injuries.Results. - The age of the athletes was 32 +/- 10 years old and the body mass index (BMI) 23.3 +/- 2.2 kg/m(2). The most frequent injuries occurred during trekking (61%), followed by mountain bike (24%). Abrasions (36.7%) and cuts (24.5%) were the most frequent injuries mentioned. Tissue level lesions occurred in 61.2% of the episodes. The most frequent injuries were contusions (16.3%) at muscular level, and sprain (6.1%) and fracture (6.1%) at osteoarticular system. Related to the body structure, the lower limb was the most affected (49%), mainly ankle (14.3%) and knee (12.2%). In the upper limb (30.6%), arm and forearm were more affected with cuts and abrasions. Neck and trunk were responsible for 20.4% of the injuries. Cramps (31%) and tendinitis (11%) were also mentioned.Conclusion. - The data suggest that it is necessary to create one training approach including prevention and logistics for participants rescue and rapid attendance during the tournament. (C) 2008 Published by Elsevier Masson SAS.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study examined the daily life and most important physical injuries suffered and reported by the dancers of a professional (contemporary) dance company in S (a) over tilde $o Paulo, Brazil. Through an observational, cross,sectional, retrospective procedure using a questionnaire that collected qualitative and quantitative data, we were able to gather information on 30 dancers who collaborated with the survey. We determined that the injuries considered as most important by dancers were those that prevented dance activity during some months. These injuries occurred mainly during rehearsals (which is the activity occuppying, the most time on the schedule). Articular injuries were the most frequent and mainly involved the knee and ankle. They were related to classical technique, in which most of the company's artists started their dance careers. Medical care usually was sought within 1 day, and the prescribed treatment resolved the problem, but the injury cause was not identified in all cases.
Resumo:
Objective. - In a pioneer way, we investigated the morbidity of sports injuries referred by judo athletes from São Paulo State Championship.Material and methods. - Data collection from 93 senior judokas in State of São Paulo Judo Championship, through Referred Morbidity Inquiry about last year.Results. - One hundred and ten events were registered with a distribution frequency gradient of sprain > contusion > strain > ligament injury > partial and total dislocation. The most injured body areas were: knee (26.3%), shoulder (21.8%), fingers (17.3%), and ankle (10.0%). The most risky situation was when the athlete was training (standing, applying a blow) and it can be explained by the frequent and unprepared exposition of the athletes. Yearly lesion rate was 1.18 injuries per athlete/year.Conclusion. - Sprains constitute the most common judo injury, and athletes are more susceptible when they apply blows; discussion about the direction that the prevention should be applied remains opened. (c) 2006 Elsevier Masson SAS. All rights reserved.
Resumo:
OBJECTIVES: Treatments for injured articular cartilage have not advanced to the point that efficient regeneration is possible. However, there has been an increase in the use of platelet-rich plasma for the treatment of several orthopedic disorders, including chondral injuries. Our hypothesis is that the treatment of chondral injuries with platelet gel results in higher-quality repair tissue after 180 days compared with chondral injuries not treated with gel.METHODS: A controlled experimental laboratory study was performed on 30 male rabbits to evaluate osteochondral injury repair after treatment with or without platelet gel. Osteochondral injuries were surgically induced in both knees of each rabbit at the medial femoral condyle. The left knee injury was filled with the platelet gel, and the right knee was not treated. Microscopic analysis of both knee samples was performed after 180 days using a histological grading scale.RESULTS: The only histological evaluation criterion that was not significantly different between treatments was metachromasia. The group that was treated with platelet gel exhibited superior results in all other criteria (cell morphology, surface regularity, chondral thickness and repair tissue integration) and in the total score.CONCLUSION: The repair tissue was histologically superior after 180 days in the study group treated with platelet gel compared with the group of untreated injuries.
Resumo:
To analyze strength and integrated electromyography (IEMG) data in order to determine the neuromuscular efficiency (NME) of the vastus lateralis (VL) and biceps femoris (BF) muscles in patients with anterior cruciate ligament (ACL) injuries, during the preoperative and postoperative periods; and to compare the injured limb at these two times, using the non-operated limb as a control. EMG data and BF and VL strength data were collected during three maximum isometric contractions in knee flexion and extension movements. The assessment protocol was applied before the operation and two months after the operation, and the NME of the BF and VL muscles was obtained. There was no difference in the NME of the VL muscle from before to after the operation. On the other hand, the NME of the BF in the non-operated limb was found to have increased, two months after the surgery. The NME provides a good estimate of muscle function because it is directly related to muscle strength and capacity for activation. However, the results indicated that two months after the ACL reconstruction procedure, at the time when loading in the open kinetic chain within rehabilitation protocols is usually started, the neuromuscular efficiency of the VL and BF had still not been reestablished.
Resumo:
Intensive scheduling in sports requires athletes to resume physical activity shortly after injury. The purpose of this study was to investigate early isokinetic muscle strength and knee function on bone-patellar tendon-bone (BPTB) ACL reconstruction with double femoral pin fixation or interference screw technique. A prospective study was conducted from 2008 to 2009, with 48 athletes who received femoral BPTB fixation with interference screw (n = 26) or double pin (n = 22). Clinical (IKDC objective score and hop test) and isokinetic muscle strength (peak torque (PT), PT/body weight and flexion/extension rate (F/E) in 60 and 240A degrees/s) were analyzed at 6 months of follow-up. Analysis at baseline showed no differences between groups before surgery related to age, gender, associated injury, Tegner or Lysholm score; thus showing that groups were similar. During follow-up, however, there were significant differences between the two groups in some of the isokinetic muscle strength: PT/BW 60A degrees/s (Double Pin = 200% +/- A 13% vs. Interference Screw = 253% +/- A 16%*, *P = 0.01); F/E 60A degrees/s (Double Pin = 89% +/- A 29%* vs. Interference Screw = 74% +/- A 12%, *P = 0.04). No statistical differences between groups were observed on IKDC objective score, hop test and complications. The significant muscle strength outcome of the interference screw group found in this study gives initial evidence that this fixation technique is useful for athletes that may need accelerated rehabilitation. Early return to sports ability signaled by isokinetic muscle strength is of clinical relevance as it is one of the main goals for athletes' rehabilitation. III.
Resumo:
In contrast to the treatment of avulsion lesions of the anterior cruciate ligament (ACL) the management of intrasubstance ACL tears in the skeletally immature patient remains controversial. Prospective studies could show that conservative treatment results in severe instability with concomitant intraarticular damage and poor function of the knee. Reconstruction of a torn ACL always carries the risk of damaging the open growth plates; with consecutively affecting the longitudinal or axial growth of the lower extremity either on the femoral or the tibial side. Thus, several surgical procedures are available to prevent adverse events mentioned above. The purpose of this study is to review the recent literature regarding the treatment algorithm for ACL injuries in skeletally immature patients. This review will (1) investigate the indications for ACL surgery in children; (2) determine if a surgical procedure is clinically superior in skeletally immature patients; and (3) correlate the adverse events with the surgical technique.
Resumo:
Purpose: This systematic review examines what is known about injuries in strength training. Methods: A systematic search was performed in PubMed and SportDiscus. Studies were included if they examined powerlifters, weightlifters, strongman athletes, bodybuilding athletes, individuals who undertook recreational weight training or weight training to complement athletic performance. Exposure variables were incidence, severity and body part injury. Results: After examining 1214 titles and abstracts, 62 articles were identified as potentially relevant. Finally, 11 were included in this systematic review. Conflicting results were reported on the relationships between injury definition and incidence or severity recorded. The lower back followed by the shoulder and knee are the most frequently affected areas in strength sports. Conclusion: Strength training is safe. However, the variety of injury definitions has makes it difficult to compare different studies in this field. New styles of reporting injuries have appeared, and could make increases these ratios. If methodological limitations in measuring incidence rate and severity injuries can be resolved, more work can be conducted to define the real incidence rate, compare it with others sports, and explore cause and effect relationships in randomized controlled trials. Key Words: strength training, injuries, specific strength sports, severity