882 resultados para KEYS
Resumo:
This document presents the results of the first two monitoring events to track the recovery of a repaired coral reef injured by the M/V Wellwood vessel grounding incident of August 4, 1984. This grounding occurred within the boundaries of what at the time was designated the Key Largo National Marine Sanctuary (NMS), now designated the Key Largo NMS Existing Management Area within the Florida Keys National Marine Sanctuary (FKNMS). Pursuant to the National Marine Sanctuaries Act (NMSA) 16 U.S.C. 1431 et seq., and the Florida Keys National Marine Sanctuary and Protection Act (FKNMSPA) of 1990, NOAA is the federal trustee for the natural and cultural resources of the FKNMS. Under Section 312 of the NMSA, NOAA has the authority to recover monetary damages for injury, destruction, or loss of Sanctuary resources, and to use the recovered monies to restore injured or lost sanctuary resources within the FKNMS. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. To evaluate restoration success, reference habitats adjacent to the restoration site are concurrently monitored to compare the condition of restored reef areas with “natural” coral reef areas unimpacted by the vessel grounding or other injury. Restoration of the site was completed on July 22, 2002, and thus far two monitoring events have occurred; one in the Fall of 2004, and one in the Summer/Fall of 2006. The monitoring has consisted of: assessment of the structural stability of restoration modules and comparison of the coral recruitment conditions of the modules and reference sites. Corals are divided into Gorgonians, Milleporans, and Scleractinians and (except where noted) recruits are defined as follows: Gorgonians—maximum size (height) 150 mm at first monitoring event, 270 mm at second; Milleporans—maximum size (height) 65 mm at first event, 125 mm at second; Scleractinians—maximum size (greatest diameter) 50 mm at second event (only one species was size-classed at first event, at smaller size). Recruit densities at the restored and reference areas for each event are compared, as are size-class frequency distributions. For the Scleractinians, number and percentage of recruits by species, as well as several common biodiversity indices are provided. Finally, a qualitative comparison of recruit substrate settlement preference is indicated. Generally, results indicate that restored areas are converging on reference areas, based on almost all parameters examined, with one noted exception. Further monitoring is planned and the trends are anticipated to continue; close attention will be paid to the indicated anomaly. (PDF contains 63 pages.)
Resumo:
Executive Summary: Circulation and Exchange of Florida Bay and South Florida Coastal Waters The coastal ecosystem of South Florida is comprised of distinct marine environments. Circulation of surface waters and exchange processes, which respond to both local and regional forcings, interconnect different coastal environments. In addition, re-circulating current systems within the South Florida coastal ecosystem such as the Tortugas Gyre contribute to retention of locally spawned larvae. Variability in salinity, chlorophyll, and light transmittance occurs on a wide range of temporal and spatial scales, in response to both natural forcing, such as seasonal precipitation and evaporation and interannual “El Niño” climate signals, and anthropogenic forcing, such as water management practices in south Florida. The full time series of surface property maps are posted at www.aoml.noaa.gov/sfp. Regional surface circulation patterns, shown by satellite-tracked surface drifters, respond to large-scale forcing such as wind variability and sea level slopes. Recent patterns include slow flow from near the mouth of the Shark River to the Lower Keys, rapid flow from the Tortugas to the shelf of the Carolinas, and flow from the Tortugas around the Tortugas Gyre and out of the Florida Straits. The Southwest Florida Shelf and the Atlantic side of the Florida Keys coastal zone are directly connected by passages between the islands of the Middle and Lower Keys. Movement of water between these regions depends on a combination of local wind-forced currents and gravitydriven transports through the passages, produced by cross-Key sea level differences on time scales of several days to weeks, which arise because of differences in physical characteristics (shape, orientation, and depth) of the shelf on either side of the Keys. A southeastward mean flow transports water from western Florida Bay, which undergoes large variations in water quality, to the reef tract. Adequate sampling of oceanographic events requires both the capability of near real-time recognition of these events, and the flexibility to rapidly stage targeted field sampling. Capacity to respond to events is increasing, as demonstrated by investigations of the 2002 “blackwater” event and a 2003 entrainment of Mississippi River water to the Tortugas. (PDF contains 364 pages.)
Resumo:
This document presents the results of the monitoring of a repaired coral reef injured by the M/V Connected vessel grounding incident of March 27, 2001. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resources within the FKNMS and, thus, are responsible for mediating the restoration of the damaged marine resources and monitoring the outcome of the restoration actions. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. The monitoring program at the Connected site was to have included an assessment of the structural stability of installed restoration modules and biological condition of reattached corals performed on the following schedule: immediately (i.e., baseline), 1, 3, and 6 years after restoration and following a catastrophic event. Restoration of this site was completed on July 20, 2001. Due to unavoidable delays in the settlement of the case, the “baseline” monitoring event for this site occurred in July 2004. The catastrophic monitoring event occurred on August 31, 2004, some 2 ½ weeks after the passage of Hurricane Charley which passed nearby, almost directly over the Dry Tortugas. In September 2005, the year one monitoring event occurred shortly after the passage of Hurricane Katrina, some 70 km to the NW. This report presents the results of all three monitoring events. (PDF contains 37 pages.)
Resumo:
This document presents the results of the monitoring of a repaired coral reef injured by the M/V Jacquelyn L vessel grounding incident of July 7, 1991. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resources within the FKNMS and, thus, are responsible for mediating the restoration of the damaged marine resources and monitoring the outcome of the restoration actions. The restoration monitoring program tracks patterns of biological recovery, determines the success of restoration measures, and assesses the resiliency to environmental and anthropogenic disturbances of the site over time. The monitoring program at the Jacquelyn L site was to have included an assessment of the structural stability of installed restoration modules and biological condition of reattached corals performed on the following schedule: immediately (i.e., baseline), 1, 3, and 6 years after restoration and following a catastrophic event. Restoration of this site was completed on July 20, 2000. Due to unavoidable delays in the settlement of the case, the “baseline” monitoring event for this site occurred in July 2004. The catastrophic monitoring event occurred on August 31, 2004, some 2 ½ weeks after the passage of Hurricane Charley which passed nearby, almost directly over the Dry Tortugas. In September 2005, the year one monitoring event occurred shortly after the passage of Hurricane Katrina, some 70 km to the NW. This report presents the results of all three monitoring events. (PDF contains 31 pages.)
Resumo:
This document presents the results of baseline monitoring of a repaired coral reef injured by the M/V Wave Walker vessel grounding incident of January 19, 2001. This grounding occurred in Florida state waters within the boundaries of the Florida Keys National Marine Sanctuary (FKNMS). The National Oceanic and Atmospheric Administration (NOAA) and the Board of Trustees of the Internal Improvement Trust Fund of the State of Florida, (“State of Florida” or “state”) are the co-trustees for the natural resources within the FKNMS. This report documents the efficacy of the restoration effort, the condition of the restored reef area two year and four months post-effort, and provides a picture of surrounding reference areas, so as to provide a basis for future comparisons by which to evaluate the long-term success of the restoration. (PDF contains 25 pages.)
Resumo:
The largely sedentary behavior of many fishes on coral reefs is well established. Information on the movement behavior of individual fish, over fine temporal and spatial scales, however, continues to be limited. It is precisely this type of information that is critical for evaluating the success of marine reserves designed for the conservation and/or management of vagile fishes. In this pilot study we surgically-tagged eight hogfish (Lachnolaimus maximus Walbaum 1792) with coded-acoustic transmitters inside the Conch Reef Research Only Area (a no-take marine reserve) in the northern Florida Keys National Marine Sanctuary. Our primary objective was to characterize the movement of L. maximus across Conch Reef in the vicinity of the reserve. All fish were captured, surgically-tagged and released in situ during a saturation mission to the Aquarius Undersea Laboratory, which is located in the center of the reserve. Movement of tagged L. maximus was recorded for up to 95 days by three acoustic receivers deployed on the seafloor. Results showed clear diel patterns in L. maximus activity and regular movement among the receivers was recorded for seven of the eight tagged fish. Fidelity of tagged fish to the area of release was high when calculated at the scale of days, while within-day fidelity was comparatively low when calculated at the scale of hours. While the number of fish departures from the array also varied, the majority of departures for seven of the eight fish did not exceed 1-hr (with the exception of one 47-day departure), suggesting that when departures occurred, the fish did not travel far. Future efforts will significantly expand the number of receivers at Conch Reef such that fish movement behavior relative to the reserve boundaries can be quantified with increased temporal and spatial resolution. (PDF contains 22 pages.)
Resumo:
We tagged a total of 14 yellowtail snapper (Ocyurus chrysurus Bloch 1790) and black grouper (Mycteroperca bonaci Poey 1860) inside the Conch Reef Research Only Area (a no-take marine reserve) in the northern Florida Keys National Marine Sanctuary in November 2001. Both species are heavily exploited in the region. Our objective was to characterize site fidelity and movement behavior along the reef tract to the north and south of the release point. Fishes were collected by baited hook and line from the surface, surgically-tagged with coded-acoustic transmitters, and returned to the reef by snorkelers. Tracking of fish movement behavior was conducted by five acoustic receivers deployed on the seafloor from Davis Reef in the south to Pickles Reef in the north. Fishes were tracked for up to eight months. Results indicated that the majority of signal detections for individual fish from both species were recorded at the two Conch Reef receivers. Limited movement from Conch Reef to Davis Reef was recorded, but no signal detections were recorded at the two sites to the north of Conch Reef. These results suggest that both species show site fidelity to Conch Reef. Future studies will seek to characterize this site fidelity with increased temporal and spatial resolution at Conch Reef. (PDF contains 25 pages.)
Resumo:
This study analyzed species richness, distribution, and sighting frequency of selected reef fishes to describe species assemblage composition, abundance, and spatial distribution patterns among sites and regions (Upper Keys, Middle Keys, Lower Keys, and Dry Tortugas) within the Florida Keys National Marine Sanctuary (FKNMS) barrier reef ecosystem. Data were obtained from the Reef Environmental Education Foundation (REEF) Fish Survey Project, a volunteer fish-monitoring program. A total of 4,324 visual fish surveys conducted at 112 sites throughout the FKNMS were used in these analyses. The data set contained sighting information on 341 fish species comprising 68 families. Species richness was generally highest in the Upper Keys sites (maximum was 220 species at Molasses Reef) and lowest in the Dry Tortugas sites. Encounter rates differed among regions, with the Dry Tortugas having the highest rate, potentially a result of differences in the evenness in fishes and the lower diversity of habitat types in the Dry Tortugas region. Geographic coverage maps were developed for 29 frequently observed species. Fourteen of these species showed significant regional variation in mean sighting frequency (%SF). Six species had significantly lower mean %SF and eight species had significantly higher mean %SF in the Dry Tortugas compared with other regions. Hierarchical clustering based on species composition (presence-absence) and species % SF revealed interesting patterns of similarities among sites that varied across spatial scales. Results presented here indicate that phenomena affecting reef fish composition in the FKNMS operate at multiple spatial scales, including a biogeographic scale that defines the character of the region as a whole, a reef scale (~50-100 km) that include meso-scale physical oceanographic processes and regional variation in reef structure and associated reef habitats, and a local scale that includes level of protection, cross-shelf location and a suite of physical characteristics of a given reef. It is likely that at both regional and local scales, species habitat requirements strongly influence the patterns revealed in this study, and are particularly limiting for species that are less frequently observed in the Dry Tortugas. The results of this report serve as a benchmark for the current status of the reef fishes in the FKNMS. In addition, these data provide the basis for analyses on reserve effects and the biogeographic coupling of benthic habitats and fish assemblages that are currently underway. (PDF contains 61 pages.)
Resumo:
The Tortugas South Ecological Reserve, located along the margin of the southwest Florida carbonate platform, is part of the largest no-take marine reserve in the U.S. Established in July 2001, the reserve is approximately 206 km2 in area, and ranges in depths from 30 m at Riley’s Hump to over 600 m at the southern edge of the reserve. Geological and biological information for the Tortugas South Reserve is lacking, and critical for management of the area. Bathymetric surveys were conducted with a Simrad EM 3000 multibeam echosounder at Riley’s Hump and Miller’s Ledge, located in the northern and central part of the reserve. Resulting data were used to produce basemaps to obtain geological ground truth and visual surveys of biological communities, including reef fishes. Visual surveys were conducted using SCUBA and the Phantom S2 Remotely Operated Vehicle (ROV) at Riley’s Hump. Visual surveys were conducted using the ROV and the Deepworker 2000 research submersible along Miller’s Ledge, within and outside of the reserve. A total of 108 fishes were recorded during SCUBA, ROV, and submersible observations. Replicate survey transects resulted in over 50 fishes documented at Miller’s Ledge, and eight of the top ten most abundant species were planktivores. Many species of groupers, including scamp (Mycteroperca phenax), red grouper (Epinephelus morio), snowy grouper (E. niveatus), speckled hind (E. drummondhayi), and Warsaw grouper (E. nigritus), are present in the sanctuary. Numerous aggregations of scamp and a bicolor phase of the Warsaw grouper were observed, indicating the importance of Miller’s Ledge as a potential spawning location for both commercially important and rare deep reef species, and as a potential source of larval recruits for the Florida Keys and other deep reef ecosystems of Florida
Resumo:
This study summarizes the results of a survey designed to provide economic information about the financial status of commercial reef fish boats with homeports in the Florida Keys. A survey questionnaire was administered in the summer and fall of 1994 by interviewers in face-to-face meetings with owners or operators of randomly selected boats. Fishermen were asked for background information about themselves and their boats, their capital investments in boats and equipment, and about their average catches, revenues, and costs per trip for their two most important kinds of fishing trips during 1993 for species in the reef fish fishery. Respondents were characterized with regard to their dependence on the reef fish fishery as a source of household income. Boats were described in terms of their physical and financial characteristics. Different kinds of fishing trips were identified by the species that generated the greatest revenue. Trips were grouped into the following categories: yellowtail snapper (Ocyurus chrysurus); mutton snapper (Lutjanus analis), black grouper (Mycteroperca bonaci), or red grouper (Epinephelus morio); gray snapper (Lutjanus griseus); deeper water groupers and tilefishes; greater amberjack (Seriola dumerili); spiny lobster (Panulirus argus); king mackerel (Scomberomorus cavalla); and dolphin (Coryphaena hippurus). Average catches, revenues, routine trip costs, and net operating revenues per boat per trip and per boat per year were estimated for each category of fishing trips. In addition to its descriptive value, data collected during this study will aid in future examinations of the economic effects of various regulations on commercial reef fish fishermen.(PDF file contains 48 pages.)
Resumo:
There is an increasing demand for fish in the world due to a growing population, better economic situation in some sectors, and greater awareness of health issues in relation to food. Since capture fisheries have stagnated, fish farming has become a very fast growing food production system. In this presentation, the author gives an overview of the technologies that are available for genetic improvement of fish, and briefly discuss their merit in the context of a sustainable development. He also discusses the essential prerequisites for effective dissemination of improved stock to farmers. It is concluded that genetic improvement programs based on selective breeding can substantially contribute to sustainable fish production systems. Furthermore, if such genetic improvement programs are followed up with effective dissemination strategies, they can result in a positive impact on farmers' incomes.
Resumo:
Each year, more than 500 motorized vessel groundings cause widespread damage to seagrasses in Florida Keys National Marine Sanctuary (FKNMS). Under Section 312 of the National Marine Sanctuaries Act (NMSA), any party responsible for the loss, injury, or destruction of any Sanctuary resource, including seagrass, is liable to the United States for response costs and resulting damages. As part of the damage assessment process, a cellular automata model is utilized to forecast seagrass recovery rates. Field validation of these forecasts was accomplished by comparing model-predicted percent recovery to that which was observed to be occurring naturally for 30 documented vessel grounding sites. Model recovery forecasts for both Thalassia testudinum and Syringodium filiforme exceeded natural recovery estimates for 93.1% and 89.5% of the sites, respectively. For Halodule wrightii, the number of over- and under-predictions by the model was similar. However, where under-estimation occurred, it was often severe, reflecting the well-known extraordinary growth potential of this opportunistic species. These preliminary findings indicate that the recovery model is consistently generous to Responsible Parties in that the model forecasts a much faster recovery than was observed to occur naturally, particularly for T. testudinum, the dominant seagrass species in the region and the species most often affected. Environmental setting (i.e., location, wave exposure) influences local seagrass landscape pattern and may also play a role in the recovery dynamics for a particular injury site. An examination of the relationship between selected environmental factors and injury recovery dynamics is currently underway. (PDF file contains 20 pages.)
Resumo:
Eudiaptomus vulgaris Schmeil is the most abundant copepod in Lake Maggiore and forms also, in respect to other entomostraca, the most important element, through its average biomass and because it is fairly numerous throughout the year. Plankton samples collected in a systematic and quantitative way, gave the opportunity to study some aspects of the dynamics of the population of this copepod, in safety in view of the uncertainty which in this kind of study can ensue when samples are taken only at a single station - in consequence of the changes in size of population between different water masses. The results of the biometrical observations are of the population of Eudiaptomus vulgaris is presented.
Resumo:
Identification keys to families of Cladocera and to subfamilies, genera, species and subspecies of Macrothricidae and Moinidae are given. This translation does not include ecological notes or illustrations.
Resumo:
The translation of this section of the larger publication ”Opredelitel' presnovodnykh bespozvonochnykh evropeiskoi chasti SSSR. (Plankton i bentos)” provides identification keys to the larvae and pupae of chironomids that occur in the Soviet Union. The morphology of the larvae of Chironomidae is described in the introductory part.