932 resultados para KEEP CLEAR Pavement Markings
Resumo:
Federal Highway Administration, Office of Research, Washington, D.C.
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.
Resumo:
Nas Américas, a leishmaniose visceral (LV) experimenta um processo de urbanização e o cão doméstico é considerado o principal reservatório da doença neste cenário, embora seu papel no ciclo de transmissão não esteja totalmente explicado. Este estudo teve como objetivo investigar, por meio da análise de dados espaciais e imagens de sensoriamento remoto, a relação de fatores ambientais com a ocorrência de infecção canina por Leishmania chagasi e sua correlação espacial com a doença humana na cidade de Teresina (Piauí - Brasil), onde foi relatada a primeira epidemia urbana de LV no Brasil. Os resultados são apresentados na forma de dois manuscritos, nos quais são utilizados dados georreferenciados obtidos por meio de um inquérito sorológico canino realizado durante o ano de 2011, em diferentes bairros com transmissão moderada ou intensa. No primeiro, a regressão logística multinível foi utilizada para correlacionar a prevalência da infecção canina com variáveis ambientais de quadrículas de 900m2 (30mx30m) onde os domicílios estavam localizados, ajustando para as características individuais dos cães (sexo, idade e raça) e da residência. Participaram desta análise 717 cães distribuídos em 494 domicílios e 396 quadrículas. Um percentual >16,5% da área da quadrícula coberta por pavimentação clara (ruas de terra ou asfalto antigo) foi a única variável ambiental associada com a infecção canina por L. chagasi (Odds ratio [OR] = 2,00, intervalo de 95% de confiança [IC95%]: 1,22 - 3,26). Estas áreas provavelmente correspondem àquelas mais pobres e com pior infraestrutura urbana, sugerindo a ocorrência de um padrão de transmissão intra-urbano similar aos padrões rurais e peri-urbanos da LV. No segundo manuscrito, a partir da análise hierárquica do vizinho mais próximo foi verificada a presença de sete clusters de maior concentração de cães soropositivos em relação aos soro negativos em áreas menos urbanizadas e com vegetação pouco densa. Participaram desta análise 322 cães distribuídos em cinco bairros. A relação espacial entre os caninos soropositivos e os casos humanos foi investigada através do método da distância média entre os pontos e analisada por meio do teste t. Foi encontrada uma maior proximidade de casos humanos em relação a cães soropositivos quando comparada à distância em relação aos soro negativos, sugerindo a existência de uma relação espacial entre a LV humana e a soropositividade canina. Os resultados contribuem para uma maior compreensão sobre a dinâmica da doença em meio urbano além de fornecer informações úteis para a prevenção e controle da LV em seres humanos.
Resumo:
Federal Highway Administration, Traffic Systems Division, Washington, D.C.
Resumo:
Federal Highway Administration, Traffic Systems Division, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Virginia Department of Transportation, Richmond
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research and Development, Washington, D.C.