1000 resultados para KCl
Resumo:
金属溶解于熔盐中的行为表现为溶解的金属与熔盐中的离子发生了不同程度的相互作用。稀土金属在含有自身熔盐中的溶解,前人已作了一些研究,其溶解机理归结起来主要有以下几种:生成了低价稀土离子;体系形成了胶体溶液以及离子-电子液
Resumo:
用高温液态X射线衍射方法,测定了摩尔比为1∶2的CaCl_2-KCl熔体的径向分布函数。结果表明,熔体中Ca~(2+)-Cl~-、K~+-Cl~-和Cl~--Cl~-离子对间的最近邻距离分别为0.278,0.306和0.380nm.由于Ca~(2+)与Cl-间的强Coulomb作用,在熔融的摩尔比为1∶2的CaCl_2-KGl体系中,Cl~--Cl~-间的最近邻距离明显小于纯KCl熔体中Cl~--Cl~-间的最近邻距离。
Resumo:
用Monte Carlo方法对La-LaCl_3-KC1体系在1223K时的结构进行了计算机模拟研究,得到了熔体中诸离子对的偏径向分布函数和体系在1223K的势能和内能。结果表明,在熔体中La(Ⅲ)有相当一部分以LaCl_6~3六配位形式存在,而La(Ⅱ)则主要以LaCl_4~2四配位形式存在。结果还表明,熔体中的自由体积分布不均匀,存在许多不规则的空孔和缝隙,其中XK~+·YC1~-集团内的缝隙比纯KC1熔体中的缝隙明显增多。
Resumo:
目前多采用径向分布函数来描述熔盐的结构,虽然这种一维统计描述给出的信息有限,但它是迄今为止较为成熟的一种方法。实验上获得熔体的径向分布函数主要通过衍射法。在国际上日本等国家的研究人员对纯熔盐的衍射结构分析已经进行了多年的研究,由于混合熔盐的结构比较复杂,所以近些年才有关于混合熔盐X-射线衍射结构分析的报道,但只限于相同阳离子或相同阴离子的体系,对于LiF-KCl体系至今未见报道。
Resumo:
本文利用X射线散射技术测定和Monte Carlo计算机模拟计算,获得了LiF-KCl熔体的径向分布函数。实验发现,在互易系LiF-KCl熔体中,小离子Li~+与F~-更易形成结合较为紧密的集团,而大离子K~+与Cl~-的结合相对较为松地,即出现“大大小小”效应。
Resumo:
In order to avoid the hygroscopicity of LiCl specimem, the method of directly chlorinating Li_2CO_3 with NH_4Cl was successfully introducing into the thermal analysis of the system containing LiCl. The three fusibility diagram of LiCl-KCl, LiClNaCl, LiCl-LiF were determined using the method. The results are in agreement wish the values reported in the literature, and phase diagram of LiCl-KCl-LiF ternary system was constructed based on these results. Temperature of the ternary eutectic, composed of 57.3mol%...
Resumo:
本文利用透明槽技术、电化学循环V-A法及量子化学EHMO三种方法,研究了La在KCl-NaCl(1:1mol)及LaCl_3-KCl-NaCl熔体中的溶解行为。初步认为:溶解在KCl-NaCl熔体中的La是以中性金属状态存在。在LaCl_3-KCl-NaCl熔体中,溶解的La与La~(3+)作用生成低价La~(2+)离子,La~(2+)又与周围的La~(3+)作用形成原子簇离子La_m~(n+)赋存于熔体之中。
Resumo:
首次成功地将NH_4Cl直接氯化Li_2CO_3的反应引入热分析,制作含LiCl的二元、三元体系溶盐相图,避免LiCl吸水性给相图绘制带来的困难,三个二元体系LiCl-KCl、NaCl-LiCl和LiCI-LiF的测定结果与文献吻合很好.并在此基础上制作了LiCl-KCl-LiF三元相图。
Resumo:
Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus were grown on Sabouraud Dextrose Agar (SDA) modified with KCl to give a range of water activity (a(w)) from 0.938 to 0.998. Growth of all three species was optimal at 0.983 a(w) and growth occurred over the a(w) range tested. Acyclic sugar alcohol (polyol) and trehalose content of conidia was determined by HPLC and found to vary with species and a(w). Conidia of B. bassiana and P. farinosus were found to contain totals of 1.5% and 2.3% polyols respectively at 0.998 a(w), and double these amounts at <0.950 a(w). Conidia of M. anisopliae contained from 5.7% to 6.8% polyols at each a(w) tested. In conidia of all three species the predominant polyol was mannitol. The lower molecular weight polyols, arabitol and erythritol, were found to accumulate at reduced a(w). Small amounts of glycerol were present in conidia of each species; <15% total polyols. Conidia of B. bassiana and M. anisopliae contained about 0.5% trehalose from 0.970 to 0.998 a(w), but only trace amounts below 0.950 a(w). Conidia of P. farinosus contained 2.1% trehalose at 0.998 a(w) and this decreased to <0.1% below 0.950 a(w). Potential to manipulate the endogenous reserves of conidia of these biological control agents to enhance viability and desiccation tolerance is discussed.
Resumo:
The optical-absorption spectrum of a cationic Ag0 atom in a KCl crystal has been studied theoretically by means of a series of cluster models of increasing size. Excitation energies have been determined by means of a multiconfigurational self-consistent field procedure followed by a second-order perturbation correlation treatment. Moreover results obtained within the density-functional framework are also reported. The calculations confirm the assignment of bands I and IV to transitions of the Ag-5s electron into delocalized states with mainly K-4s,4p character. Bands II and III have been assigned to internal transitions on the Ag atom, which correspond to the atomic Ag-4d to Ag-5s transition. We also determine the lowest charge transfer (CT) excitation energy and confirm the assignment of band VI to such a transition. The study of the variation of the CT excitation energy with the Ag-Cl distance R gives additional support to a large displacement of the Cl ions due to the presence of the Ag0 impurity. Moreover, from the present results, it is predicted that on passing to NaCl:Ag0 the CT onset would be out of the optical range while the 5s-5p transition would undergo a redshift of 0.3 eV. These conclusions, which underline the different character of involved orbitals, are consistent with experimental findings. The existence of a CT transition in the optical range for an atom inside an ionic host is explained by a simple model, which also accounts for the differences with the more common 3d systems. The present study sheds also some light on the R dependence of the s2-sp transitions due to s2 ions like Tl+.
Resumo:
One of the major challenges faced nowadays by oil companies is the exploration of pre-salt basins. Thick salt layers were formed in remote ages as a consequence of the evaporation of sea water containing high concentrations of NaCl and KCl. Deep reservoirs can be found below salt formations that prevent the outflow of oil, thus improving the success in oil prospection. The slurries used in the cement operations of salt layers must be adequate to the properties of those specific formations. At the same time, their resulting properties are highly affected by the contamination of salt in the fresh state. It is t herefore important to address the effects of the presence of salt in the cement slurries in order to assure that the well sheath is able to fulfill its main role to provide zonal isolation and mechanical stability. In this scenario, the objective of the present thesis work was to evaluate the effect of the presence of NaCl and KCl premixed with cement and 40% silica flour on the behavior of cement slurries. Their effect in the presence of CO2 was also investigated. The rheological behavior of slurries containing NaCl and KCl was evaluated along with their mechanical strength. Thermal and microstructural tests were also carried out. The results revealed that the presence of NaCl and KCl affected the pozzolanic activity of silica flour, reducing the strength of the hardened slurries containing salt. Friedel´s salt was formed as a result of the bonding between free Cl- and tricalcium aluminate. The presence of CO2 also contributed to the degradation of the slurries as a result of a process of carbonation/bicarbonataion