71 resultados para JSR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In a retrospective cohort study undertaken in 12 European countries, 249 female narcoleptic patients with cataplexy (n = 216) and without cataplexy (n = 33) completed a self-administrated questionnaire regarding pregnancy and childbirth. The cohort was divided further into patients whose symptoms of narcolepsy started before or during pregnancy (308 pregnancies) and those in whom the first symptoms of narcolepsy appeared after delivery (106 pregnancies). Patients with narcolepsy during pregnancy were older during their first pregnancy (P < 0.001) and had a higher body mass index (BMI) prior to pregnancy (P < 0.01). Weight gain during pregnancy was higher in narcoleptic patients with cataplexy (P < 0.01). More patients with narcolepsy-cataplexy during pregnancy had impaired glucose metabolism and anaemia. Three patients experienced cataplexy during delivery. The rate of caesarean sections was higher in the narcolepsy-cataplexy group compared to the narcolepsy group (P < 0.05). The mean birth weight and gestational age of neonates were within the normal range and did not differ across groups. Neonatal care was affected adversely by symptoms of narcolepsy in 60.1% of those with narcolepsy during pregnancy. This study reports more obstetric complications in patients with narcolepsy-cataplexy during pregnancy; however, these were not severe. This group also had a higher BMI and higher incidence of impaired glucose metabolism during pregnancy. Caesarian section was conducted more frequently in narcolepsy-cataplexy patients, despite cataplexy being a rare event during delivery. Furthermore, symptoms of narcolepsy may render care of the infant more difficult.
Resumo:
The aim of this study was to describe the clinical and PSG characteristics of narcolepsy with cataplexy and their genetic predisposition by using the retrospective patient database of the European Narcolepsy Network (EU-NN). We have analysed retrospective data of 1099 patients with narcolepsy diagnosed according to International Classification of Sleep Disorders-2. Demographic and clinical characteristics, polysomnography and multiple sleep latency test data, hypocretin-1 levels, and genome-wide genotypes were available. We found a significantly lower age at sleepiness onset (men versus women: 23.74 ± 12.43 versus 21.49 ± 11.83, P = 0.003) and longer diagnostic delay in women (men versus women: 13.82 ± 13.79 versus 15.62 ± 14.94, P = 0.044). The mean diagnostic delay was 14.63 ± 14.31 years, and longer delay was associated with higher body mass index. The best predictors of short diagnostic delay were young age at diagnosis, cataplexy as the first symptom and higher frequency of cataplexy attacks. The mean multiple sleep latency negatively correlated with Epworth Sleepiness Scale (ESS) and with the number of sleep-onset rapid eye movement periods (SOREMPs), but none of the polysomnographic variables was associated with subjective or objective measures of sleepiness. Variant rs2859998 in UBXN2B gene showed a strong association (P = 1.28E-07) with the age at onset of excessive daytime sleepiness, and rs12425451 near the transcription factor TEAD4 (P = 1.97E-07) with the age at onset of cataplexy. Altogether, our results indicate that the diagnostic delay remains extremely long, age and gender substantially affect symptoms, and that a genetic predisposition affects the age at onset of symptoms.
Resumo:
Endothelial function typically precedes clinical manifestations of cardiovascular disease and provides a potential mechanism for the associations observed between cardiovascular disease and sleep quality. This study examined how subjective and objective indicators of sleep quality relate to endothelial function, as measured by brachial artery flow-mediated dilation (FMD). In a clinical research centre, 100 non-shift working adults (mean age: 36 years) completed FMD testing and the Pittsburgh Sleep Quality Index, along with a polysomnography assessment to obtain the following measures: slow wave sleep, percentage rapid eye movement (REM) sleep, REM sleep latency, total arousal index, total sleep time, wake after sleep onset, sleep efficiency and apnea-hypopnea index. Bivariate correlations and follow-up multiple regressions examined how FMD related to subjective (i.e., Pittsburgh Sleep Quality Index scores) and objective (i.e., polysomnography-derived) indicators of sleep quality. After FMD showed bivariate correlations with Pittsburgh Sleep Quality Index scores, percentage REM sleep and REM latency, further examination with separate regression models indicated that these associations remained significant after adjustments for sex, age, race, hypertension, body mass index, apnea-hypopnea index, smoking and income (Ps < 0.05). Specifically, as FMD decreased, scores on the Pittsburgh Sleep Quality Index increased (indicating decreased subjective sleep quality) and percentage REM sleep decreased, while REM sleep latency increased (Ps < 0.05). Poorer subjective sleep quality and adverse changes in REM sleep were associated with diminished vasodilation, which could link sleep disturbances to cardiovascular disease.
Resumo:
Both deepening sleep and evolving epileptic seizures are associated with increasing slow-wave activity. Larger-scale functional networks derived from electroencephalogram indicate that in both transitions dramatic changes of communication between brain areas occur. During seizures these changes seem to be 'condensed', because they evolve more rapidly than during deepening sleep. Here we set out to assess quantitatively functional network dynamics derived from electroencephalogram signals during seizures and normal sleep. Functional networks were derived from electroencephalogram signals from wakefulness, light and deep sleep of 12 volunteers, and from pre-seizure, seizure and post-seizure time periods of 10 patients suffering from focal onset pharmaco-resistant epilepsy. Nodes of the functional network represented electrical signals recorded by single electrodes and were linked if there was non-random cross-correlation between the two corresponding electroencephalogram signals. Network dynamics were then characterized by the evolution of global efficiency, which measures ease of information transmission. Global efficiency was compared with relative delta power. Global efficiency significantly decreased both between light and deep sleep, and between pre-seizure, seizure and post-seizure time periods. The decrease of global efficiency was due to a loss of functional links. While global efficiency decreased significantly, relative delta power increased except between the time periods wakefulness and light sleep, and pre-seizure and seizure. Our results demonstrate that both epileptic seizures and deepening sleep are characterized by dramatic fragmentation of larger-scale functional networks, and further support the similarities between sleep and seizures.
Resumo:
An ascent to altitude has been shown to result in more central apneas and a shift towards lighter sleep in healthy individuals. This study employs spectral analysis to investigate the impact of respiratory disturbances (central/obstructive apnea and hypopnea or periodic breathing) at moderate altitude on the sleep electroencephalogram (EEG) and to compare EEG changes resulting from respiratory disturbances and arousals. Data were collected from 51 healthy male subjects who spent 1 night at moderate altitude (2590 m). Power density spectra of Stage 2 sleep were calculated in a subset (20) of these participants with sufficient artefact-free data for (a) epochs with respiratory events without an accompanying arousal, (b) epochs containing an arousal and (c) epochs of undisturbed Stage 2 sleep containing neither arousal nor respiratory events. Both arousals and respiratory disturbances resulted in reduced power in the delta, theta and spindle frequency range and increased beta power compared to undisturbed sleep. The similarity of the EEG changes resulting from altitude-induced respiratory disturbances and arousals indicates that central apneas are associated with micro-arousals, not apparent by visual inspection of the EEG. Our findings may have implications for sleep in patients and mountain tourists with central apneas and suggest that respiratory disturbances not accompanied by an arousal may, none the less, impact sleep quality and impair recuperative processes associated with sleep more than previously believed.
Resumo:
The diagnosis of restless legs syndrome (RLS) relies upon diagnostic criteria which are based on history only, and dopaminergic treatment is not normally the first choice of treatment for all patients. It would be worthwhile to identify patients non-responsive to dopaminergic treatment beforehand, because they may suffer from a restless legs-like syndrome and may require alternative treatment. We included retrospectively 24 adult patients fulfilling the four essential criteria for restless legs and 12 age-matched healthy controls. They were investigated by ambulatory actigraphy from both legs over three nights, and patients started treatment with dopamine agonists after this diagnostic work-up. We examined 12 responders to dopaminergic treatment and 12 non-responders and studied the association between response to dopaminergic treatment and the periodic limb movement index (PLMI) as assessed with actigraphy. Demographic characteristics, excessive daytime sleepiness and fatigue at baseline were similar in all three groups. Baseline RLS severity was similar between responders and non-responders [International Restless Legs Severity Scale (IRLS): 25 ± 9 and 24 ± 8]. Group comparisons of PLMI before treatment initiation showed significant differences between the three groups. Post-hoc pairwise comparisons revealed that healthy controls had significantly lower PLMI (4.9 ± 4.5) than responders (29.3 ± 22.7) and non-responders (13.3 ± 11.2). Similarly, the PLMI in responders was lower than in non-responders. PLMI day-to-day variability did not differ between responders and non-responders and there was no correlation between treatment effect, as assessed by the decrease of the IRLS and baseline PLMI. Our retrospective study indicates that actigraphy to assess periodic limb movements may contribute to a better diagnosis of dopamine-responsive restless legs syndrome.
Resumo:
After stroke, the injured brain undergoes extensive reorganization and reconnection. Sleep may play a role in synaptic plasticity underlying stroke recovery. To test this hypothesis, we investigated topographic sleep electroencephalographic characteristics, as a measure of brain reorganization, in the acute and chronic stages after hemispheric stroke. We studied eight patients with unilateral stroke in the supply territory of the middle cerebral artery and eight matched controls. All subjects underwent a detailed clinical examination including assessment of stroke severity, sleep habits and disturbances, anxiety and depression, and high-density electroencephalogram examination with 128 electrodes during sleep. The recordings were performed within 10 days after stroke in all patients, and in six patients also 3 months later. During sleep, we found higher slow-wave and theta activity over the affected hemisphere in the infarct area in the acute and chronic stage of stroke. Slow-wave, theta activity and spindle frequency range power over the affected hemisphere were lower in comparison to the non-affected side in a peri-infarct area in the patients' group, which persisted over time. Conversely, in wakefulness, only an increase of delta, theta activity and a slowing of alpha activity over the infarct area were found. Sleep slow-wave activity correlated with stroke severity and outcome. Stroke might have differential effects on the generation of delta activity in wakefulness and sleep slow waves (1-8 Hz). Sleep electroencephalogram changes over both the affected and non-affected hemispheres reflect the acute dysfunction caused by stroke and the plastic changes underlying its recovery. Moreover, these changes correlate with stroke severity and outcome.
Resumo:
The validation of rodent models for restless legs syndrome (Willis-Ekbom disease) and periodic limb movements during sleep requires knowledge of physiological limb motor activity during sleep in rodents. This study aimed to determine the physiological time structure of tibialis anterior activity during sleep in mice and rats, and compare it with that of healthy humans. Wild-type mice (n = 9) and rats (n = 8) were instrumented with electrodes for recording the electroencephalogram and electromyogram of neck muscles and both tibialis anterior muscles. Healthy human subjects (31 ± 1 years, n = 21) underwent overnight polysomnography. An algorithm for automatic scoring of tibialis anterior electromyogram events of mice and rats during non-rapid eye movement sleep was developed and validated. Visual scoring assisted by this algorithm had inter-rater sensitivity of 92-95% and false-positive rates of 13-19% in mice and rats. The distribution of the time intervals between consecutive tibialis anterior electromyogram events during non-rapid eye movement sleep had a single peak extending up to 10 s in mice, rats and human subjects. The tibialis anterior electromyogram events separated by intervals <10 s mainly occurred in series of two-three events, their occurrence rate in humans being lower than in mice and similar to that in rats. In conclusion, this study proposes reliable rules for scoring tibialis anterior electromyogram events during non-rapid eye movement sleep in mice and rats, demonstrating that their physiological time structure is similar to that of healthy young human subjects. These results strengthen the basis for translational rodent models of periodic limb movements during sleep and restless legs syndrome/Willis-Ekbom disease.
Resumo:
The sleep electroencephalogram (EEG) spectrum is unique to an individual and stable across multiple baseline recordings. The aim of this study was to examine whether the sleep EEG spectrum exhibits the same stable characteristics after acute total sleep deprivation. Polysomnography (PSG) was recorded in 20 healthy adults across consecutive sleep periods. Three nights of baseline sleep [12 h time in bed (TIB)] following 12 h of wakefulness were interleaved with three nights of recovery sleep (12 h TIB) following 36 h of sustained wakefulness. Spectral analysis of the non-rapid eye movement (NREM) sleep EEG (C3LM derivation) was used to calculate power in 0.25 Hz frequency bins between 0.75 and 16.0 Hz. Intraclass correlation coefficients (ICCs) were calculated to assess stable individual differences for baseline and recovery night spectra separately and combined. ICCs were high across all frequencies for baseline and recovery and for baseline and recovery combined. These results show that the spectrum of the NREM sleep EEG is substantially different among individuals, highly stable within individuals and robust to an experimental challenge (i.e. sleep deprivation) known to have considerable impact on the NREM sleep EEG. These findings indicate that the NREM sleep EEG represents a trait.