812 resultados para Isopropyl alcohol
Resumo:
Polypyrrole exhibits reversible changes in their direct current resistance on exposure to organic volatiles. However, one needs to employ an array of such sensors to discriminate organic volatiles present in a mixture. Hence, polypyrrole based gas sensor is designed for the detection and discrimination of different organic volatiles. Multi frequency impedance measurement technique is used to detect the organic vapors, such as acetone, ethanol and Isopropyl alcohol, in the gas phase, over a frequency range 10 Hz to 2 MHz. The sensor response is monitored by measuring the changes in its capacitance, resistance and the dissipation factor upon exposure to organic volatiles. It is observed that the capacitive property of the sensor is more sensitive to these volatiles than its resistive property. Each volatile responds to the sensor in terms of dissipation factor at specific frequency and found that the peak magnitude has a linear relationship with their concentrations.
Resumo:
A new experimental technique is proposed to determine refractive indices of liquids and isotropic solids at different wavelengths. A Pellin-Broca hollow prism filled with a liquid sample produces the spectrum (of the liquid prism) on the photographic plate of the camera. A plane reflector, mounted at a small angle to the normal of the exit face of the prism, also forms a direct image of the collimator slit in the plane of the same photographic plate. All the necessary information for determining the refractive indices (for different wavelengths) is extracted directly from the spectrogram without using any goniometric system. Experiments are conducted with the liquid prisms of isopropyl alcohol, water, and benzene. The results of the experiments are compared with those obtained by a Pulfrich refractometer (critical angle method). The proposed new technique gives the refractive indices for visible and invisible spectral lines to an accuracy of 2x10(-5). (C) 1997 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Para aumentar os volumes de extração de petróleo, resolver e prevenir problemas nas operações de produção são utilizados diversos produtos químicos, dentre os quais se destacam os inibidores de corrosão, que são utilizados em toda cadeia produtiva do petróleo visando proteger o sistema da deterioração por corrosão. Os sais de amônio quaternário são uma das classes de inibidores mais utilizadas pela indústria do petróleo devido a sua grande eficiência. Entretanto, sua solubilidade em água faz com que estejam presentes na água produzida representando um risco para contaminação ambiental, visto que possuem baixa biodegrabilidade e potencial de bioacumulação. Como se encontram misturados a outros produtos químicos e sob efeitos das variações do ambiente em que são aplicados, definir um método de análise confiável e viável para monitoramento em linha representa um desafio para os laboratórios de campos de produção. Neste trabalho, foi estudado o emprego da fluorescência de ultravioleta na quantificação de um inibidor de corrosão do tipo sal de amônio quaternário em água. Foram obtidos espectros de emissão do produto comercial em água, além do estudo de variáveis instrumentais e interferentes presentes na água produzida. A comparação com padrões de sal de amônio quaternário permitiu identificar como principal fluorófilo, um sal alquil-aril de amônio quaternário. Estudos de estabilidade revelaram que a adsorção do inibidor de corrosão nas superfícies dos frascos plásticos provoca a queda do sinal fluorescente e que a adição de isopropanol reduz este efeito de 40 para 24%. Foram obtidas curvas de calibração com a formulação comercial e com o cloreto de 2-metil-4-dodecil-benzil-trimetil amônio com uma boa correlação. Amostras sintéticas do inibidor foram determinadas com um erro relativo de 2,70 a 13,32%. O método de adição padrão foi avaliado usando uma amostra de água produzida, e os resultados não foram satisfatórios, devido à interferência, principalmente, de compostos orgânicos aromáticos presentes
Resumo:
Esta investigação objetivou a eficácia antimicrobiana de agentes desinfetantes utilizados na desinfecção dos instrumentos endodônticos, durante o período transoperatório do tratamento endodôntico. A atividade antimicrobiana dos desinfetantes álcool isopropílico, acetona e ácido peracético (PAA) foi avaliada sobre microrganismos planctônicos através de teste de contato (time kill assay), utilizando inóculo de 9,9 X 109 a 1,2 X 1012 unidades formadoras de colônia (UFC) e por determinação da concentração bactericida mínima (CBM), usando inóculo de aproximadamente 106 UFC. Os agentes químicos também foram avaliados sobre Enterococcus faecalis (E. faecalis) ATCC 29212 cultivada em matriz de dentina (ex vivo) visando a formação de biofilme. O biofilme (organismos sésseis) microbiano foi removido com limas tipo Kerr (LK), até as lâminas estarem visualmente preenchidas. As LK contaminadas foram usadas como carreadores (logo após a contaminação ou secas dentro de uma câmara de fluxo laminar por 10 minutos). As LK carreadoras foram imersas em álcool isopropílico ou acetona ambos a 80%, ou em Ácido peracético 2%, por 30 ou 60 segundos. As limas foram posteriormente colocadas em tubos de ensaio contendo caldo Enterococcosel para observar o crescimento dos enterococos viáveis. Depois, os experimentos in vivo foram realizados com LK contaminadas por material necrótico pulpar da região cervical de dentes indicados para tratamento endodôntico. As LK contaminadas foram imersas, por 30 ou 60 segundos, em 80% de acetona ou 80% de álcool isopropílico ou 2% de PAA. As limas foram então inoculadas em tubos de ensaio contendo meio tioglicolato. Os organismos que cresceram, foram identificados após o tratamento com PAA. A corrosão mediada pelos agentes químicos também foi testada, após a incubação de LK de aço inoxidável e de NiTi por 60 minutos, medindo o peso das LK antes e depois da imersão e por microscopia eletrônica de varredura (MEV). Todos os agentes químicos foram capazes de eliminar ou reduzir a viabilidade das bactérias de espécies planctônicas Gram-negativas e Gram-positivas, embora a atividade dos produtos químicos sobre E. faecalis sésseis em testes de carreadores de LK demonstrou que o álcool isopropílico ou acetona foram incapazes de eliminar a contaminação bacteriana, especialmente, quando as limas foram secas previamente à exposição aos produtos químicos, por 15 ou 30 segundos. O PAA demonstrou a melhor atividade antimicrobiana e eliminou a viabilidade das células sésseis E. faecalis de ambas as limas endodônticas tipo K úmidas ou secas, após exposição por 15 segundos (100% de eliminação). Os experimentos desenvolvidos in vivo demonstraram que o PAA foi o agente mais eficaz (p<0,05), capaz de eliminar a viabilidade dos organismos em 92% das LK imersas depois de 60 segundos, quando comparado com acetona (64%) ou com álcool isopropílico (50%). O crescimento microbiano após o contato com o PAA demonstrou que somente o grupo dos Lactobacillus sp foi resistente a essa substância química. Os agentes químicos não demonstraram ser corrosivos, após a imersão por 1 hora, tanto por pesagem quanto por MEV. Foi observado que o PAA foi o agente mais eficaz para ser utilizado como desinfetante de instrumentos, durante o período transoperatório do tratamento endodôntico.
Resumo:
Triacylglycerols (TAGs) from microalgae have the potential to be used for biodiesel, but several technical and economic hurdles have to be overcome. A major challenge is efficient extraction of intracellular TAGs from algae. Here we investigate the use of enzymes to deconstruct algal cell walls/membranes. We describe a rapid and simple assay that can assess the efficacy of different enzyme treatments on TAG-containing algae. By this means crude papain and bromelain were found to be effective in releasing TAGs from the diatom Phaeodactylum tricornutum, most likely because of their cysteine protease activity. Pre-treating algal biomass with crude papain enabled complete extraction of TAGs using heptane/isopropyl alcohol. Heptane as a single solvent was also effective, although complete recovery of TAG was not obtained. Economic implications of these findings are discussed, with the aim to reduce the complexity of, and energy needed in, TAG extraction.
Resumo:
Triacylglycerols (TAGs) from microalgae have the potential to be used for biodiesel, but several technical and economic hurdles have to be overcome. A major challenge is efficient extraction of intracellular TAGs from algae. Here we investigate the use of enzymes to deconstruct algal cell walls/membranes. We describe a rapid and simple assay that can assess the efficacy of different enzyme treatments on TAG-containing algae. By this means crude papain and bromelain were found to be effective in releasing TAGs from the diatom Phaeodactylum tricornutum, most likely because of their cysteine protease activity. Pre-treating algal biomass with crude papain enabled complete extraction of TAGs using heptane/isopropyl alcohol. Heptane as a single solvent was also effective, although complete recovery of TAG was not obtained. Economic implications of these findings are discussed, with the aim to reduce the complexity of, and energy needed in, TAG extraction. © 2012 Elsevier B.V.
Resumo:
The cidal activities of aqueous taurolidine (2.0% w/v containing 5.0% wlv polyvinylpyrrolidone as a solubilising agent) and alcoholic taurolidine (2.0% w/v dissolved in Isopropyl alcohol 50% v/v) against spores of Bacillus subtilis NCTC 10073 were evaluated at 20 degrees C, 37 degrees C, 45 degrees C and 55 degrees C. Increased temperature increased both the rate and extent of sporicidal activity of both solutions. Total spore kill was not observed in either solution type over the range of temperatures and contact times examined. There were no observed differences between the sporicidal activities of aqueous and alcoholic taurolidine solutions at all temperatures examined. Ultrasonic energy (50 Hz operating frequency in a 150 W ultrasonic bath in conjunction with increasing temperature allowed to rise naturally from ambient temperature to 41 degrees C over 4 h) enhanced the sporicidal activities of both solution types. However, the difference in activity between the two solution types was not significant. Compared to normal spores, alteration of spore coat layers (hydrogen-form spores) did not alter spore susceptibility to aqueous taurolidine at elevated temperatures of 37 degrees C and 55 degrees C.
Resumo:
In liquid-phase reaction systems, the role of the solvent is often limited to the simple requirement of dissolving and/or diluting substrates. However, the correct choice, either pure or mixed, can significantly influence both reaction rate and selectivity. For multi-phase heterogeneously catalysed reactions observed variations may be due to changes in mass transfer rates, reaction mechanism, reaction kinetics, adsorption properties and combinations thereof. The liquid-phase hydrogenation of 2-butanone to 2-butanol over a Ru/SiO catalyst, for example, shows such complex rate behaviour when varying water/isopropyl alcohol (IPA) solvent ratios. In this paper, we outline a strategy which combines measured rate data with physical property measurements and molecular simulation in order to gain a more fundamental understanding of mixed solvent effects for this heterogeneously catalysed reaction. By combining these techniques, the observed complex behaviour of rate against water fraction is shown to be a combination of both mass transfer and chemical effects. © 2012 Elsevier Inc. All rights reserved.
Resumo:
This paper reports on the enhancement of the thermal transport properties of nanocomposite materials containing hexagonal boron nitride in poly (vinyl alcohol)through room-temperature atmospheric pressure direct-current microplasma processing. Results show that the microplasma treatment leads to exfoliation of the hexagonal boron nitride in isopropyl alcohol, reducing the number of stacks from >30to a few or single layers. The thermal diffusivity of the resulting nanocomposites reaches 8.5 mm2 s-1, 50 times greater than blank poly (vinyl alcohol) and twice that ofnanocomposites containing non-plasma treated boron nitride nanosheets. From TEM analysis, we observe much less aggregation of the nanosheets after plasma processing along with indications of an amorphous carbon interfacial layer which may contribute to stable dispersion of boron nitride nanosheets in the resulting plasma treated colloids.
Resumo:
This project is focussed on the thermsLl decomposition of t-butyl hydroperoxide and sec-butyl hydroperoxide at 120°C to 160°C in three alcohol solvents. These are methanol, ethajiol and isopropyl alcohol. The aim of the project was to examine the process of induced decomposition. Thermal decomposition of t-hutyl hydroperoxide and sec-butyl hydroperoxide indicate that these reactions have first-order kinetics with activation energies on the order of 20 to 28 K cal/mole, Styrene was used as a free radical trap to inhibit the induced decomposition. The results permitted calculation of how much induced decomposition occurred in its absence. The experimental resvilts indicate that the induced decomposition is important for t-butyl hydroperoxide in alcohol solvents, as shown by both the reaction rate suid product studies. But sec-butyl hydroperoxide results show that the concerted mechanism for the interaction of two sec-butylperoxy radicals occurs in addition to the induced decomposition. Di-sodium E.D,T.A. was added to reduce possible effects of trace transition metal ion .impurities. The result of this experiment were not as expected. The rate of hydroperoxide decomposition was about the same but was zero-order in hydroperoxide concentration.
Resumo:
Ba0.77Ca0.23TiO3 (BCT23) nanometric powders, synthesized by the modified Pechini method, were used as precursor to produce thick films (50-130 mu m) employing the electrophoretic deposition (EPD) technique. The BCT23 powder presented a single crystalline phase with an average particle size and a crystallite size of similar to 60 nm and similar to 20 nm, respectively, when calcined at 800 degrees C/2h. BCT23 thick films were deposited on platinum substrates starting from different suspensions prepared by dispersion of the powder into: isopropyl alcohol (IPA) or a mixture of acetylacetone (Acac) and ethanol (EtOH) (1:1, volumetric ratio). A milling process was used to deagglomerate the powders in order to increase the suspension stability and improving the deposition. Dense and crack free thick films with uniform microstructure were obtained after sintering at 1300 degrees C/2 h from Acac+EtOH solution. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The high concentration of residual oil is one of the greatest problems found in petroleum mature fields. In these reservoirs, different enhanced oil recovery methods (EOR) can be used, highlighting the microemulsion injection. The microemulsion has showed to be efficient in petroleum recovery due to its ability to promote an efficient displacement of the petroleum, acting directly in the residual oil. In this way, this research has as objective the study of microemulsion systems obtained using a commercial surfactant (TP), determining microemulsion thermal stabilities and selecting points inside the pseudoternary phases diagram, evaluating its efficiencies and choosing the best system, that has the following composition: TP as surfactant (S), isopropyl alcohol as co-surfactant (C), kerosene as oil phase, water as aqueous phase, C/S ratio = 1, and 5% sodium p-toluenesulfonate as hydrotope; being observed the following parameters for the selection of the best pseudoternary phases diagram: C/S ratio, co-surfactant nature and addition of hydrotope to the system. The efficiency in petroleum recovery was obtained using two sandstone formation systems: Assu and Botucatu. The study of thermal stabilities showed that as the concentration of active matter in the system increased, the thermal stability also increased. The best thermal stability was obtained using point F (79.56 0C). The system that presented the best recovery percentile between the three selected (3) was composed by: 70% C/S, 2% kerosene and 28% water, with 94% of total recovery efficiency and 60% with microemulsion injection, using the Botucatu formation, that in a general way presented greater efficiencies as compared with the Assu one (81.3% of total recovery efficiency and 38.3% with microemulsion injection)
Resumo:
The aim of this study was to evaluate the persistence of resin cement residues after dentin surface cleaning with different alcohol-based solutions or an essential oil (eucalyptol). Forty bovine teeth were sectioned in order to expose pulp chamber dentin to be washed with 1.0 mL of 2.5% sodium hypochlorite (NaOCl), followed by 0.1 mL of 17% EDTA application for 3 min, and final irrigation with 2.5% NaOCl. The specimens were air dried and resin-based cement was rubbed onto the dentine surface with a microbrush applicator. After 15 min, the surface was scrubbed with a cotton pellet and moistened with different dentin cleaning solutions, compounding the following groups: G195% ethanol, G270% ethanol, G370% isopropyl alcohol, or G4eucalyptol. The dentin was scrubbed until the cement residues could not be visually detected. Sections were then processed for SEM and evaluated at x 500 magnification. Scores were attributed to each image according to the area covered by residual sealer, and data were subjected to KruskalWallis at 5% significance. Eucalyptol promoted the most adequate dentin cleaning, although no statistical difference was detected amongst the groups (P > 0.05), except between the eucalyptol and 70% ethanol groups (P < 0.05). All the evaluated dentin cleaning solutions were unable to completely remove the cement residues from the dentin surface. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
This paper describes a simple method to co-precipitate CeO2 and Ce0.8Gd0.2O1.9-delta with ammonium hydroxide from solvents such as: water, ethylene glycol, ethyl alcohol and isopropyl alcohol. Characterization by Raman spectroscopy and XRD evidenced the formation of a solid solution of gadolinium-doped ceria at room temperature. Nanometric particles with crystallite size of 3.1 nm were obtained during synthesis using ethyl alcohol as solvent. This is a promising result compared with those mentioned in the literature, in which the smallest crystallite size reported was, 6.5 nm. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Lotus (Nelumbo nucifera Gaertn.) is a perennial herbaceous aquatic ornamental plant with potential to be used as a new cut flower for the Brazilian ornamental market. It shows exotic and attractive flowers and has a strong market appeal, once it is known as a symbol of purity, holiness and immortality. However, flowers have a short-vase life. Lotus flower stem exudes a large quantity of sticky milky sap from the cut surface, which is produced in laticifers, spatially associated with both xylem and phloem. It has been reported that latex coagulates on the cut surface preventing or reducing water absorption and reducing flowers' vaselife, requiring treatments to stop the flow of latex. The objective of this study was to report observations of lotus postharvest characteristics and evaluate treatments to overcome latex flow. The experiment was conducted as a complete randomized design with three replications of four stems in each vase and eight treatments; a control (distilled water), pretreatment of cut stem-ends with hot water (40° C/1 minute), boiling water (3 seconds), isopropyl alcohol 90% (10 minutes) or citric acid (pH = 2.8/1h) and, maintenance of stems in a holding solution of Tween® 20 (0.01%), citric acid (200 mg L-1) or Tween® 20 (0.01%) plus citric acid (200 mg L-1). Treatments had no significant effect on flowers vaselife which was only about three days, although isopropyl alcohol, hot and boiling water completely stopped latex flow. Cut stem-ends pretreated with citric acid (pH = 2.8/1 h) showed a significantly higher relative water content of petals compared to others treatments. The senescence symptom of lotus cut flowers was mainly characterized by abscission of turgid petals and dehiscence of stamens without any visual change of petal color and brightness.