132 resultados para Isobutylene-isoprene
Resumo:
The kinetics of the polymerization of isoprene with the heterogeneous rare earth catalyst system isopropoxyneodymium dichloride/triethylaluminium (Nd(OPri)Cl-2-AlEt(3)) was examined in a specially designed dilatometer. The rate of polymerization is expressed as R(p) approximate to -d[M]/dt = k'(p)[Nd](1.40)[M]. The main kinetical parameters such as the concentration of active propagating chain, the efficiency of lanthanide catalyst used (ELCU), the absolute rate constant of propagation as well as the average life time of growing chains, were determined at 30 degrees C, 40 degrees C, 45 degrees C and 50 degrees C.
Resumo:
In the copolymerization of styrene-butadiene and styrene-isoprene, a novel rare earth catalyst system (CF3CO2)(3)Ln/R(3-n)AlH(n)/(CH3)(3)CCH2Br (Ln = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; R = Me-, Et-, i-Bu-, and Oct-; n = 0 and 1) has been studied. The 1, 4 unit contents in the copolymers obtained are found to range from 64.4 to 99.6% with St contents of 5.2 to 59.9%, and intrinsic viscosities of 0.1 to 0.5 dl g(-1) measured by i.r., H-1 n.m.r. and C-13 n.m.r. spectra. From the calculated data of linked ratios, a change in the microstructure is induced by the styrene unit, probably adjacent to the butadiene or isoprene unit. An interesting result is that the ratios of styrene unit linked with 1, 2 or 3,4 units in the copolymers are far higher than in copolymers obtained with the nickel catalyst. The experimental results are discussed in terms of rare earth pi-allyl coordination and back-biting mechanism.
Resumo:
(eta(3)-C3H5)(2)CeCl5Mg2(tmed)(2) combined with HAl(i-Bu)(2) or Al(i-Bu)(3) can initiate the polymerization of isoprene with about 50% of the cis-1, 4 microstructure contained in the polymer. The insertion reaction of isoprene occurring between Ce3+ and e
Resumo:
The rate coefficients for the reaction between atomic chlorine and a number of naturally occurring species have been measured at ambient temperature and atmospheric pressure using the relative rate technique. The values obtained were (4.0 ± 0.8) × 10-10, (2.1 ± 0.5) × 10-10, (3.2 ± 0.5) × 10-10, and (4.9 ± 0.5) × 10-10 cm3 molecule-1 s-1, for reactions with isoprene, methyl vinyl ketone, methacrolein and δ3-carene, respectively. The value obtained for isoprene compares favourably with previously reported values. No values have been reported to date for the rate constants of the other reactions.
Resumo:
Aircraft OH and HO2 measurements made over West Africa during the AMMA field campaign in summer 2006 have been investigated using a box model constrained to observations of long-lived species and physical parameters. "Good" agreement was found for HO2 (modelled to observed gradient of 1.23 ± 0.11). However, the model significantly overpredicts OH concentrations. The reasons for this are not clear, but may reflect instrumental instabilities affecting the OH measurements. Within the model, HOx concentrations in West Africa are controlled by relatively simple photochemistry, with production dominated by ozone photolysis and reaction of O(1D) with water vapour, and loss processes dominated by HO2 + HO2 and HO2 + RO2. Isoprene chemistry was found to influence forested regions. In contrast to several recent field studies in very low NOx and high isoprene environments, we do not observe any dependence of model success for HO2 on isoprene and attribute this to efficient recycling of HOx through RO2 + NO reactions under the moderate NOx concentrations (5–300 ppt NO in the boundary layer, median 76 ppt) encountered during AMMA. This suggests that some of the problems with understanding the impact of isoprene on atmospheric composition may be limited to the extreme low range of NOx concentrations.
Resumo:
Two styrene-isoprene-styrene block copolymers Vector 4111 and 4113, exhibiting cylindrical (18 wt % PS) and spherical (16 wt % PS) morphology, respectively, have been examined under uniaxial elongation up to 200% strain. On the basis of stress-strain data, mechanical properties are compared for isotropic and oriented polystyrene domains. The structure at various stages of deformation has been determined from SAXS patterns in three planes and two principal deformation directions with respect to orientation. Samples showed a very high degree of hexagonal packing, resulting in an X-ray pattern taken parallel to the cylinder alignment approaching single crystal ordering. Cylinders were aligned with the closest packed planes parallel to film surface. Particular attention has been paid to a lattice deformation process occurring during the first stretching and relaxation cycle. For a copolymer with oriented cylindrical morphology the deformation was affine up to 120% strain. The microdomain spacing was calculated parallel and perpendicular to the stretching direction. The cylindrical microstructure orientation, quantified by Hermans' orientation factor reduced during elongation of oriented polymer, while the elongation of isotropic sample caused an increase of orientation. Deformation of all studied morphologies was reversible.
Resumo:
[1] We have implemented a process-based isoprene emission model in the HadGEM2 Earth-system model with coupled atmospheric chemistry in order to examine the feedback between isoprene emission and climate. Isoprene emissions and their impact on atmospheric chemistry and climate are estimated for preindustrial (1860–1869), present-day (2000–2009), and future (2100–2109) climate conditions. The estimate of 460 TgC/yr for present-day global total isoprene emission is consistent with previous estimates. Preindustrial isoprene emissions are estimated to be 26% higher than present-day. Future isoprene emissions using the RCP8.5 scenario are similar to present-day because increased emissions resulting from climate warming are countered by CO2 inhibition of isoprene emissions. The impact of biogenic isoprene emissions on the global O3 burden and CH4 lifetime is small but locally significant, and the impact of changes in isoprene emissions on atmospheric chemistry depends strongly on the state of climate and chemistry.
Resumo:
We have incorporated a semi-mechanistic isoprene emission module into the JULES land-surface scheme, as a first step towards a modelling tool that can be applied for studies of vegetation – atmospheric chemistry interactions, including chemistry-climate feedbacks. Here, we evaluate the coupled model against local above-canopy isoprene emission flux measurements from six flux tower sites as well as satellite-derived estimates of isoprene emission over tropical South America and east and south Asia. The model simulates diurnal variability well: correlation coefficients are significant (at the 95 % level) for all flux tower sites. The model reproduces day-to-day variability with significant correlations (at the 95 % confidence level) at four of the six flux tower sites. At the UMBS site, a complete set of seasonal observations is available for two years (2000 and 2002). The model reproduces the seasonal pattern of emission during 2002, but does less well in the year 2000. The model overestimates observed emissions at all sites, which is partially because it does not include isoprene loss through the canopy. Comparison with the satellite-derived isoprene-emission estimates suggests that the model simulates the main spatial patterns, seasonal and inter-annual variability over tropical regions. The model yields a global annual isoprene emission of 535 ± 9 TgC yr−1 during the 1990s, 78 % of which from forested areas.
Resumo:
Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and the carbon cycle. Isoprene is quantitatively the most important of the non-methane BVOCs (NMBVOCs), with an annual emission of about 400–600 TgC; about 90% of this is emitted by terrestrial plants. Incorporating a mechanistic treatment of isoprene emissions within land-surface schemes has recently become a focus for the modelling community, the aim being to quantify the potential magnitude of associated climate feedbacks. However, these efforts are hampered by major uncertainties about why plants emit isoprene and the relative importance of different environmental controls on isoprene emission. The availability and reliability of observations of isoprene fluxes from different types of vegetation is limited, and this also imposes constraints on model development. Nevertheless, progress is being made towards the development of mechanistic models of isoprene emission which, in conjunction with atmospheric chemistry models, will ultimately allow improved quantification of the feedbacks between the terrestrial biosphere and climate under past and future climate states.
Resumo:
The isoprenoid metabolic pathway in protozoa of the Leishmania genus exhibits distinctive characteristics. These parasites, as well as other members of the Trypanosomatidae family, synthesize ergosterol, instead of cholesterol, as the main membrane sterol lipid. Leishmania has been shown to utilize leucine, instead of acetate as the main precursor for sterol biosynthesis. While mammalian dolichols are molecules containing 15-23 isoprene units, Leishmania amazonensis promastigotes synthesize dolichol of 11 and 12 units. In this paper, we show that the intracellular stages of L. amazonensis, amastigotes, synthesize mainly polyprenols of 9 isoprene units, instead of dolichol. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
In this work is reported, in a first step, the effect of different experimental parameters and their relation with polymer properties using the homogeneous binary catalyst system composed by Ni(α-diimine)Cl2 (α-diimine = 1,4-bis(2,6-diisopropylphenyl)- acenaphthenediimine) and {TpMs*}V(Ntbu)Cl2 (TpMs* = hydridobis(3-mesitylpyrazol-1- yl)(5-mesitylpyrazol-1-yl)) activated with MAO. This complexes combination produces, in a single reactor, polyethylene blends with different and controlled properties dependent on the polymerization temperature, solvent and Nickel molar fraction (xNi). In second, the control of linear low density polyethylene (LLDPE) production was possible, using a combination of catalyst precursors {TpMs}NiCl (TpMs = hydridotris(3- mesitylpyrazol-1-yl)) and Cp2ZrCl2, activated with MAO/TMA, as Tandem catalytic system. The catalytic activities as well as the polymer properties are dependent on xNi. Polyethylene with different Mw and controlled branches is produced only with ethylene monomer. Last, the application group 3 metals catalysts based, M(allyl)2Cl(MgCl2)2.4THF (M = Nd, La and Y), in isoprene polymerization with different cocatalysts systems and experimental parameters is reported. High yields and polyisoprene with good and controlled properties were produced. The metal center, cocatalysts and the experimental parameters are determinant for the polymers properties and their control. High conversions in cis-1,4- or trans-1,4-polyisoprene were obtained and the polymer microstructure depending of cocatalyst and metal type. Combinations of Y and La precursors were effective systems for the cis/transpolyisoprene blends production, and the control of cis-trans-1,4-microstructures by Yttrium molar fraction (xY) variation was possible.
Resumo:
The biosynthesis of (2S)-2-methyl-2-(4'-methyl-3-pentenyl)-8-(3-methyl-2-butenyl)-2H-1-benzopyran-6-carboxylic acid (gaudichaudianic acid), the major metabolite in leaves and roots of Piper gaudichaudianum Kunth (Piperaceae), has been investigated employing [1(-13) C]-D-glucose as precursor. The labelling pattern in the isolated gaudichaudianic acid was determined by quantitative 13 C NMR spectroscopy analysis and was consistent with involvement of both mevalonic acid and 2-C-methyl-D-erythritol-4-phosphate pathways in the formation of the dimethylallyl- and geranyl-derived moieties. The results confirmed that both plastidic and cytoplasmic pathways are able to provide isopentenyl diphosphate units for prenylation of p-hydroxybenzoic acid. (c) 2007 Elsevier Ltd. All rights reserved.