853 resultados para Irrigation Requirements
Resumo:
Service provision project to be undertaken by staff from the Department of Employment, Economic Development and Innovation (DEEDI) to the Flower Association of Queensland Inc. (FAQI) to fulfil FAQI's requirements under the South East Queensland - Irrigation Futures project.
Resumo:
This article presents the results of a study using satellite remote sensing techniques to evaluate the current status of canal system performance in terms of the spatial and temporal mismatch between water requirements and water releases within the command area The Rajolibanda Diversion Scheme(RDS)is the only operational major irrigation project in the drought prone district of Mahaboobnagar in Andra Pradesh. It is an inter-state project between Karnataka and Andra Pradesh which comprises of an anicut constructed in Karnataka in 1995 across river Thungabhdra and a 143 km long left bank main canel. The initial 42.6 km of the canel lies in Karnataka consisting of 12 distributaries and servers and serves an localised ayacut of 2739ha. In Andra Pradesh, the latter stretch of the main canal consists of distributaries 12A to 40, is localised to serve an ayacut of 35,410 ha.of which 14,215 ha during kharif season,19,332 ha, during rabi season and 1,863 ha.of perennial crops
Resumo:
Evapotranspiration (ET) is a complex process in the hydrological cycle that influences the quantity of runoff and thus the irrigation water requirements. Numerous methods have been developed to estimate potential evapotranspiration (PET). Unfortunately, most of the reliable PET methods are parameter rich models and therefore, not feasible for application in data scarce regions. On the other hand, accuracy and reliability of simple PET models vary widely according to regional climate conditions. The objective of the present study was to evaluate the performance of three temperature-based and three radiation-based simple ET methods in estimating historical ET and projecting future ET at Muda Irrigation Scheme at Kedah, Malaysia. The performance was measured by comparing those methods with the parameter intensive Penman-Monteith Method. It was found that radiation based methods gave better performance compared to temperature-based methods in estimation of ET in the study area. Future ET simulated from projected climate data obtained through statistical downscaling technique also showed that radiation-based methods can project closer ET values to that projected by Penman-Monteith Method. It is expected that the study will guide in selecting suitable methods for estimating and projecting ET in accordance to availability of meteorological data.
Resumo:
The reuse of treated wastewater (reclaimed water) is particularly well suited for irrigated agriculture as it often contains significant quantities of plant essential nutrients. This work has shown that reclaimed water in Jordan can have adequate concentrations of potassium, phosphate, sulphate and magnesium to meet all or part of the crop’s requirements. To fully benefit from these inputs farmers must have an awareness of the water quality and reduce the application of chemical fertilisers accordingly. Interviews with farmers have shown that 75 per cent of farmers indirectly using reclaimed water are aware of the nutrients. Farmers’ decision making as to the application of chemical fertilisers appears to be influenced by a range of factors which include the type of crops being cultivated, the provision of training on nutrient management and the availability of information on the nutrient content of the reclaimed water.
Resumo:
Variable rate sprinklers (VRS) have been developed to promote localized water application of irrigated areas. In Precision Irrigation, VRS permits better control of flow adjustment and, at the same time, provides satisfactory radial distribution profiles for various pressures and flow rates are really necessary. The objective of this work was to evaluate the performance and radial distribution profiles of a developed VRS which varies the nozzle cross sectional area by moving a pin in or out using a stepper motor. Field tests were performed under different conditions of service pressure, rotation angles imposed on the pin and flow rate which resulted in maximal water throw radiuses ranging from 7.30 to 10.38 m. In the experiments in which the service pressure remained constant, the maximal throw radius varied from 7.96 to 8.91 m. Averages were used of repetitions performed under conditions without wind or with winds less than 1.3 m s-1. The VRS with the four stream deflector resulted in greater water application throw radius compared to the six stream deflector. However, the six stream deflector had greater precipitation intensities, as well as better distribution. Thus, selection of the deflector to be utilized should be based on project requirements, respecting the difference in the obtained results. With a small opening of the nozzle, the VRS produced small water droplets that visually presented applicability for foliar chemigation. Regarding the comparison between the estimated and observed flow rates, the stepper motor produced excellent results.
Resumo:
Development of irrigation, which is of crucial importance in Eritrea, is perceived by many as the main technique for improving the precarious food security situation in this Sahelian country in the Horn of Africa. The present publication presents the outcome of a nationwide workshop held in 2003, which brought together administrators, scientists, and members of public development agencies and NGOs. These workshop participants presented experiences, lessons learnt, and ideas about how to move forward in relation to development of irrigation in Eritrea. Specifically, the publication deals with the following broad themes, lessons learnt, and experiences in Eritrea: · spate irrigation systems and measurement of performance, as well as experience with modernisation of spate irrigation systems in Eritrea · small-scale irrigation systems and their potentials and pitfalls, including development of low-cost micro irrigation · climate and irrigation, including rainfall forecasts · socio-economic aspects of irrigation, including gender questions, institutional requirements, and irrigation and livelihoods The publication contains an extensive summary in the Tigrinya language, in order to facilitate access to the key findings by local non-English-speaking stakeholders in irrigation development.
Resumo:
Sustaining irrigated agriculture to meet food production needs while maintaining aquatic ecosystems is at the heart of many policy debates in various parts of the world, especially in arid and semi-arid areas. Researchers and practitioners are increasingly calling for integrated approaches, and policy-makers are progressively supporting the inclusion of ecological and social aspects in water management programs. This paper contributes to this policy debate by providing an integrated economic-hydrologic modeling framework that captures the socio-economic and environmental effects of various policy initiatives and climate variability. This modeling integration includes a risk-based economic optimization model and a hydrologic water management simulation model that have been specified for the Middle Guadiana basin, a vulnerable drought-prone agro-ecological area with highly regulated river systems in southwest Spain. Namely, two key water policy interventions were investigated: the implementation of minimum environmental flows (supported by the European Water Framework Directive, EU WFD), and a reduction in the legal amount of water delivered for irrigation (planned measure included in the new Guadiana River Basin Management Plan, GRBMP, still under discussion). Results indicate that current patterns of excessive water use for irrigation in the basin may put environmental flow demands at risk, jeopardizing the WFD s goal of restoring the ?good ecological status? of water bodies by 2015. Conflicts between environmental and agricultural water uses will be stressed during prolonged dry episodes, and particularly in summer low-flow periods, when there is an important increase of crop irrigation water requirements. Securing minimum stream flows would entail a substantial reduction in irrigation water use for rice cultivation, which might affect the profitability and economic viability of small rice-growing farms located upstream in the river. The new GRBMP could contribute to balance competing water demands in the basin and to increase economic water productivity, but might not be sufficient to ensure the provision of environmental flows as required by the WFD. A thoroughly revision of the basin s water use concession system for irrigation seems to be needed in order to bring the GRBMP in line with the WFD objectives. Furthermore, the study illustrates that social, economic, institutional, and technological factors, in addition to bio-physical conditions, are important issues to be considered for designing and developing water management strategies. The research initiative presented in this paper demonstrates that hydro-economic models can explicitly integrate all these issues, constituting a valuable tool that could assist policy makers for implementing sustainable irrigation policies.
Resumo:
A study of the assessment of the irrigation water use has been carried out in the Spanish irrigation District “Río Adaja” that has analyzed the water use efficiency and the water productivity indicators for the main crops for three years: 2010-2011, 2011-2012 and 2012-2013. A soil water balance model was applied taking into ccount climatic data for the nearby weather station and soil properties. Crop water requirements were calculated by the FAO Penman- Monteith with the application of the dual crop coefficient and by considering the readily vailable soil water content (RAW) concept. Likewise, productivity was measured by the indexes: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS), the water productivity (WP), the evapotranspiration water productivity (ETWP), and the irrigation water productivity (IWP. The results show that in most crops deficit irrigation was applied (ARIS<1) in the first two years however, the IWP improved. This was higher in 2010-2011 which corresponded to the highest effective precipitation Pe. In general, the IWP (€.m-3) varied amongcrops but crops such as: onion (4.14, 1.98 and 2.77 respectively for the three years), potato (2.79, 1.69 and 1.62 respectively for the three years), carrot (1.37, 1.70 and 1.80 respectively for the three years) and barley (1.21, 1.16 and 0.68 respectively for the three years) showed the higher values. Thus, it is highlighted the y could be included into the cropping pattern which would maximize the famer’s gross income in the irrigation district.
Resumo:
This study presents a two stage process to determine suitable areas to grow fuel crops: i) FAO Agro Ecological Zones (AEZ) procedure is applied to four Indian states of different geographical characteristics; and ii) Modelling the growth of candidate crops with GEPIC water and nutrient model, which is used to determine potential yield of candidate crops in areas where irrigation water is brackish or soil is saline. Absence of digital soil maps, paucity of readily available climate data and knowledge of detailed requirements of candidate crops are some of the major problems, of which, a series of detailed maps will evaluate true potential of biofuels in India.
Resumo:
The aorta has been viewed as a passive distribution manifold for blood whose elasticity allows it to store blood during cardiac ejection (systole), and release it during relaxation (diastole). This capacitance, or compliance, lowers peak cardiac work input and maintains peripheral sanguine irrigation throughout the cardiac cycle. The compliance of the human and canine circulatory systems have been described either as constant throughout the cycle (Toy et al. 1985) or as some inverse function of pressure (Li et al. 1990, Cappelo et al. 1995). This work shows that a compliance value that is higher during systole than diastole (equivalent to a direct function of pressure) leads to a reduction in the energetic input to the cardiovascular system (CV), even when accounting for the energy required to change compliance. This conclusion is obtained numerically, based on a 3-element lumped-parameter model of the CV, then demonstrated in a physical model built for the purpose. It is then shown, based on the numerical and physical models, on analytical considerations of elastic tubes, and on the analysis of arterial volume as a function of pressure measured in vivo (Armentano et al. 1995), that the mechanical effects of a presupposed arterial contraction are consistent with those of energetically beneficial changes in compliance during the cardiac cycle. Although the amount of energy potentially saved with rhythmically contracting arteries is small (mean 0.55% for the cases studied) the importance of the phenomenon lies in its possible relation to another function of the arterial smooth muscle (ASM): synthesis of wall matrix macromolecules. It is speculated that a reduction in the rate of collagen synthesis by the ASM is implicated in the formation of arteriosclerosis. ^
Resumo:
During the first decade of the 21st century, many golf courses were developed in the Southeast of Spain, which greatly increased the number of these facilities. Almost all of these golf courses have been accompanied by large residential developments composed of thousands of dwelling units. This article seeks to identify the factors that influence golf courses’ water consumption and estimate the number of dwelling units that an associated residential development needs to have to provide the effluent necessary to fully meet the irrigation needs of a golf course. The study indicates that private golf courses achieve greater levels of irrigation efficiency than public golf courses and that the golf courses associated with residential developments subject the irrigation needs of the grassland to the sale requirements of the real estate properties. The study also estimates that a golf course requires approximately 3000 dwelling units with an average annual occupancy of 33% to achieve self-sufficiency for irrigation.
Resumo:
Summary: Climate change has a potential to impact rainfall, temperature and air humidity, which have relation to plant evapotranspiration and crop water requirement. The purpose of this research is to assess climate change impacts on irrigation water demand, based on future scenarios derived from the PRECIS (Providing Regional Climates for Impacts Studies), using boundary conditions of the HadCM3 submitted to a dynamic downscaling nested to the Hadley Centre regional circulation model HadRM3P. Monthly time series for average temperature and rainfall were generated for 1961-90 (baseline) and the future (2040). The reference evapotranspiration was estimated using monthly average temperature. Projected climate change impact on irrigation water demand demonstrated to be a result of evapotranspiration and rainfall trend. Impacts were mapped over the target region by using geostatistical methods. An increase of the average crop water needs was estimated to be 18.7% and 22.2% higher for 2040 A2 and B2 scenarios, respectively. Objective ? To analyze the climate change impacts on irrigation water requirements, using downscaling techniques of a climate change model, at the river basin scale. Method: The study area was delimited between 4º39?30? and 5º40?00? South and 37º35?30? and 38º27?00? West. The crop pattern in the target area was characterized, regarding type of irrigated crops, respective areas and cropping schedules, as well as the area and type of irrigation systems adopted. The PRECIS (Providing Regional Climates for Impacts Studies) system (Jones et al., 2004) was used for generating climate predictions for the target area, using the boundary conditions of the Hadley Centre model HadCM3 (Johns et al., 2003). The considered time scale of interest for climate change impacts evaluation was the year of 2040, representing the period of 2025 to 2055. The output data from the climate model was interpolated, considering latitude/longitude, by applying ordinary kriging tools available at a Geographic Information System, in order to produce thematic maps.