889 resultados para Irrigation -- Breeding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On Mho obesa F. (Diptera: Syrphidae) is usually neglected in forensic entomology, although adults are rather frequent on vertebrate carrion. In this study, conducted in southeastern Brazil in 2008, we used two pig carcasses, one killed by cocaine overdose and the other by shooting, to evaluate mainly the possible influences of the type of death on the larval development of O. obesa in the pig remains. We recorded the breeding of 218 adult specimens of this syrphid fly from the carcass killed by shooting, and none from the carcass killed by cocaine. These observations may open a new perspective for the use of O. obesa in forensic studies, considering its breeding preferences and its complete development on vertebrate carrion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased use of marginal quality water with drip irrigation requires sound fertigation practices that reconcile environmental concerns with viable crop production objectives. We conducted experiments to characterize dynamics and patterns of soil solution within wet bulb formed by drip irrigation. Time-domain reflectometry probes were used to monitor the distribution of potassium nitrate (KNO(3)) and water distribution from drippers discharging at constant flow rates of 2, 4 and 8 L h(-1) in soil-filled containers. Considering results from different profiles, we observed greater solute storage near the dripper decreasing gradually towards the wetting front. About half of the applied KNO(3) solution (48%) was stored in the first layer (0-0.10 m) for all experiments, 29% was stored in the next layer (0.10-0.20 m). Comparing different dripper flow rates, we observed higher solution storage for 4 L h(-1), with 45, 53 and 47% of applied KNO(3) solution accumulating in the first layer (0-0.10 m) for dripper flow rates of 2, 4 and 8 L h(-1), respectively. The results suggest that based on the volume and frequency used in this experiment, it would be advantageous to apply small amounts of solution at more frequent intervals to reduce deep percolation losses of applied water and solutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the economic feasibility of cowpea irrigation in Piaui State Brazil. Water balances were carried out on a daily basis using the Thornthwaite and Mather (1955) method, for 165 sites, considering twelve sowings dates and available water capacity in the soil of 20, 40 and 60 mm. The net revenues were estimated with a probability of occurrence of 75%, later being spatialized to Piaui State. Cowpea irrigation was shown to economically viable for all sowing dates, irrespective of the available water capacity. Net revenues varied among several regions of the State, in function of the sowing date and available water capacity in the soil. Considering a planning strategy for Piaui State, sowing on February, I was shown to be most favorable, because it enabled higher net revenue values, covering larger areas of the State.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the rising competition for the use of water and environmental resources with consequent restrictions for farmers should change the paradigm in terms of irrigation concepts, or rather, in order to attain economical efficiency other than to supply water requirement for the crop. Therefore, taking into account the social and economical role of bean activity in Brazil, as well as the risk inherent to crop due to its high sensibility to both deficit and excessive water, the optimization methods regarding to irrigation management have become more interesting and essential. This study intends to present a way to determine the optimal water supply, considering different combinations between desired bean yield and level of risk, bringing as a result a graph with the former associated with the latter, depending on different water depths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the rapid depletion of water resources, water must be used more efficiently in agriculture to maintain current levels of yield in irrigated areas. The efficiency of irrigation systems can be increased by adjusting the amount of water applied to specific conditions of soil and crop, which may vary in a field. Taking into account spatial and temporal variability, it is evident that an equipment capable of providing different irrigation levels is necessary to meet the water requirement of the soil. This work aims to develop and evaluate a flow rate sprinkler to be used in center pivots or linear moving irrigation systems, with potential for utilization in irrigation scheduling. A prototype was developed by duplicating its calibrations, and discharge coefficient adjustment was carried out in the laboratory. To predict the flow rate, a successful model that represented the operation of the flow rate sprinkler was established. The calibration of the flow rate sprinkler prototype showed satisfactory statistical and technical results. Automation of the prototype was achieved by driving a step motor using communication from the parallel port of a microcomputer, which was controlled by a software developed for this purpose. The results were satisfactory and technically feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crop evapotranspiration (ETc) was measured as evaporative heat flux from an irrigated acid lime orchard (Citrus latifolia Tanaka) using the aerodynamic method. Crop transpiration (T) was determined by a stem heat balance method. The irrigation requirements were determined by comparing the orchard evapotranspiration (ETc) and T with the reference evapotranspiration (ETo) derived from the Penman-Monteith equation, and the irrigation requirements were expressed as ETc/ETo (Kc) and T/ETo (Kcb) ratios. The influence of inter-row vegetation on the ETc was analyzed because the measurements were taken during the summer and winter, which are periods with different regional soil water content. In this study, the average Mc values obtained were 0.65 and 0.24 for the summer and winter, respectively. The strong coupling of citrus trees to the atmosphere and the sensitivity of citrus plants to large vapor pressure deficits and air/leaf temperatures caused variations in the Kcb in relation to the ETo ranges. During the summer, the Kcb value ranged from 0.34 when the ETo exceeded 5 mm d(-1) to 0.46 when the ETo was less than 3 mm d(-1). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural reuse of treated sewage effluent (TSE) is an environmental and economic practice; however, little is known about its effects on the characteristics and microbial function in tropical soils. The effect of surplus irrigation of a pasture with TSE, in a period of 18 months, was investigated, considering the effect of 0% surplus irrigation with TSE as a control. In addition, the experiment consisted of three surplus treatments (25%, 50%, and 100% excess) and a nonirrigated pasture area (SE) to compare the soil microbial community level physiological profiles, using the Biolog method. The TSE application increased the average substrate consumption of the soil microbial community, based on the kinetic parameters of the average well color development curve fitting. There were no significant differences between the levels of surplus irrigation treatments. Surplus TSE pasture irrigation caused minor increases in the physiological status of the soil microbial community but no detectable damage to the pasture or soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased use of trickle or drip irrigation is seen as one way of helping to improve the sustainability of irrigation systems around the world. However, soil water and solute transport properties and soil profile characteristics are often not adequately incorporated in the design and management of trickle systems. In this paper, we describe results of a simulation study designed to highlight the impacts of soil properties on water and solute transport from buried trickle emitters. The analysis addresses the influence of soil hydraulic properties, soil layering, trickle discharge rate, irrigation frequency, and timing of nutrient application on wetting patterns and solute distribution. We show that (1) trickle irrigation can improve plant water availability in medium and low permeability fine-textured soils, providing that design and management are adapted to account for their soil hydraulic properties, (2) in highly permeable coarse-textured soils, water and nutrients move quickly downwards from the emitter, making it difficult to wet the near surface zone if emitters are buried too deep, and (3) changing the fertigation strategy for highly permeable coarse-textured soils to apply nutrients at the beginning of an irrigation cycle can maintain larger amounts of nutrient near to and above the emitter, thereby making them less susceptible to leaching losses. The results demonstrate the need to account for differences in soil hydraulic properties and solute transport when designing irrigation and fertigation management strategies. Failure to do this will result in inefficient systems and lost opportunities for reducing the negative environmental impacts of irrigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The floral biology, pollinators and breeding system of Echinodorus longipetalus Micheli were studied in a marshy area of the district of Taquaritinga (State of Sao Paulo), southeastern Brazil. E. longipetalus is gynodioecious and as far as is known, this is the first record of unisexual flowers, besides perfect flowers, in Echinodorus. Proportion of female individuals in the studied population is 50% and produces 31% more flowers than hermaphrodites. Perfect and pistillate flowers of E. longipetalus are similar in appearance and are pollinated by several species of Hymenoptera (mainly by Xylocopa (Neoxylocopa) suspecta Moure & Camargo). Perfect flowers offer pollen as a reward. Pistillate flowers attract floral visitors by deceit with their staminodes that resemble the stamens of the perfect flowers. Visits to pistillate flowers are quick (1-2 s), while visits to perfect flowers last up to 120 s. The perfect flowers are self-compatible and produce fruits through spontaneous self-pollination (control flowers), whereas the pistillate ones only set fruits through cross-pollinations. Perfect and pistillate flowers set more fruits under natural conditions than in manual treatments, respectively. Although the pistillate and perfect flowers bear a strong similarity, the selective pollinator behavior seems to be responsible for the increase of fruit set in perfect flowers. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Candiduria is a hospital-associated infection and a daily problem in the intensive care unit. The treatment of asymptomatic candiduria is not well established and the use of amphotericin B bladder irrigation (ABBI) is controversial. The aim of this systematic review was to determine the best place for this therapy in practice. Methods: The databases searched in this study included MEDLINE, EMBASE, Web of Science, and LILACS (January 1960-June 2007). We included manuscripts with data on the treatment of candiduria using ABBI. The studies were classified as comparative, dose-finding, or non-comparative. Results: From 213 studies, nine articles (377 patients) met our inclusion criteria. ABBI showed a higher clearance of the candiduria 24 hours after the end of therapy than fluconazole (odds ratio (OR) 0.57, 95% confidence interval (CI) 0.32-1.00). Fungal culture 5 days after the end of both therapies showed a similar response (OR 1.51, 95% CI 0.81-2.80). The evaluation of ABBI using an intermittent or continuous system of delivery showed an early candiduria clearance (24 hours after therapy) of 80% and 82%, respectively (OR 0.87, 95% CI 0.52-1.36). Candiduria clearance at >5 days after the therapy showed a superior response using continuous bladder irrigation with amphotericin B (OR 0.52, 95% CI 0.29-0.94). The use of continuous ABBI for more than 5 days showed a better result (88% vs. 78%) than ABBI for less than 5 days, but without significance (OR 0.55, 95% CI 0.34-1.04). Conclusion: Although the strength of the results in the underlying literature is not sufficient to allow the drawing of definitive conclusions, ABBI appears to be as effective as fluconazole, but it does not offer systemic antifungal therapy and should only be used for asymptomatic candiduria. (C) 2008 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of physiological understanding in improving the efficiency of breeding programs is examined largely from the perspective of conventional breeding programs. Impact of physiological research to date on breeding programs, and the nature of that research, was assessed from (i) responses to a questionnaire distributed to plant breeders and physiologists, and (ii) a survey of literature abstracts. Ways to better utilise physiological understanding for improving breeding programs are suggested, together with possible constraints to delivering beneficial outcomes. Responses from the questionnaire indicated a general view that the contribution by crop physiology to date has been modest. However, most of those surveyed expected the contribution to be larger in the next 20 years. Some constraints to progress perceived by breeders and physiologists were highlighted. The survey of literature abstracts indicated that from a plant breeding perspective, much physiological research is not progressing further than making suggestions about possible approaches to selection. There was limited evidence in the literature of objective comparison of such suggestions with existing methodology, or of development and application of these within active breeding programs. It is argued in this paper that the development of outputs from physiological research for breeding requires a good understanding of the breeding program(s) being serviced and factors affecting its performance. Simple quantitative genetic models, or at least the ideas they represent, should be considered in conducting physiological research and in envisaging and evaluating outputs. The key steps of a generalised breeding program are outlined, and the potential pathways for physiological understanding to impact on these steps are discussed. Impact on breeding programs may arise through (i) better choice of environments in which to conduct selection trials, (ii) identification of selection criteria and traits for focused introgression programs, and (iii) identifying traits for indirect selection criteria as an adjunct to criteria already used. While many breeders and physiologists apparently recognise that physiological understanding may have a major role in the first area, there appears to be relatively Little research activity targeting this issue, and a corresponding bias, arguably unjustified, toward examining traits for indirect selection. Furthermore, research on traits aimed at crop improvement is often deficient because key genetic parameters, such as genetic variation in relevant breeding populations and genetic (as opposed to phenotypic) correlations with yield or other characters of economic importance, are not properly considered in the research. Some areas requiring special attention for successfully interfacing physiology research with breeding are discussed. These include (i) the need to work with relevant genetic populations, (ii) close integration of the physiological research with an active breeding program, and (iii) the dangers of a pre-defined or narrow focus in the physiological research.