948 resultados para Iron stores
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Iron supplementation is a common recommendation to chronic kidney disease patients undergoing hemodialysis (HD). However, iron excess is closely associated with lipid peroxidation and, it is well known that electronegative low-density lipoproteins (LDL[-]) are present at higher plasma concentrations in diseases with high cardiovascular risk such as chronic kidney disease. Thus, the aim of this study was to investigate whether ferritin levels are associated with LDL(-) levels in HD patients. Design: This was a cross-sectional study. Setting: This study was conducted from a private clinic in Rio de Janeiro, Brazil. Patients: The study included 27 HD patients and 15 healthy subjects. Methods and Procedures: Twenty-seven HD patients (14 men, 58.6 +/- 10 years, 62.2 +/- 51.4 months on dialysis, and body mass index: 24.4 +/- 4.2 kg/m(2)) were studied and compared with 15 healthy individuals (6 men, 53.8 +/- 15.4 years, body mass index: 24.5 +/- 4.3 kg/m(2)). Serum LDL(-) levels were measured using the enzyme-linked immunosorbent assay method; ferritin levels by commercially available kits, and tumor necrosis factor-alpha, interleukin-6, monocyte chemoattractant protein-1, and plasminogen activator inhibitor-1 were determined with a multiplex assay kit manufactured by R&D Systems. Results: The HD patients presented higher LDL(-) and tumor necrosis factor-alpha levels (0.15 +/- 0.13 U/L and 5.9 +/- 2.3 pg/mL, respectively) than healthy subjects (0.07 +/- 0.05 U/L and 2.3 +/- 1.3 pg/mL, respectively) (P = .0001). The mean ferritin level in HD patients was 1,117.5 +/- 610.4 ng/mL, and 90% of patients showed ferritin levels exceeding 500 ng/mL. We found a positive correlation between LDL(-) and ferritin in the patients (r = 0.48; P = .01), and ferritin was a significant contributor to LDL(-) concentrations independent of inflammation. Conclusions: Excess body iron stores for HD patients was associated with signs of increased oxidative stress, as reflected by increased LDL(-) levels in HD patients. (C) 2012 by the National Kidney Foundation, Inc. All rights reserved.
Resumo:
The clinical outcome of patients who have undergone liver transplantation for hereditary hemochromatosis (HH) or who have received iron-loaded donor grafts is unclear. We reviewed 3,600 adult primary orthotopic liver transplants and assessed the outcomes in 22 patients with HH. We also evaluated graft function and iron mobilization in 12 recipients of iron-loaded donor grafts. All 22 subjects who received liver transplants for HH were male; 13 had other risk factors for liver disease. HH patients had comparatively poor outcomes following transplantation: survival at 1, 3, and 5 years posttransplantation were 72%, 62%, and 55%, respectively. Recurrent hepatocellular cancer was the most common cause of death. There was no convincing evidence of reaccumulation of iron in the grafted liver in HH; however, 1 subject demonstrated increased serum ferritin concentration and grade 2 hepatic siderosis. Liver iron stores were slow to mobilize in 7 of the 12 recipients of iron-loaded grafts. These recipients had appropriate early graft function, but 2 patients with heavy iron loading and increased hepatic iron developed hepatic fibrosis. In conclusion. (1) HH is an uncommon indication for liver transplantation, and the majority of patients requiring transplantation had other risk factors for chronic liver disease; (2) reaccumulation of liver iron in HH patients is very unusual, but increased iron stores may be slow to mobilize in normal recipients of iron-loaded grafts, potentially compromising late graft function; (3) post-liver transplant survival is reduced in HH, and affected patients require careful clinical evaluation of perioperative and postoperative risk factors. Our data suggest that iron excess in HH does not wholly depend on intestinal iron absorption but is also influenced by liver factors that moderate iron metabolism.
Resumo:
Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by excessive iron absorption resulting in pathologically increased body iron stores. It is typically associated with common HFE gene mutation (p.Cys282Tyr and p.His63Asp). However, in Southern European populations up to one third of HH patients do not carry the risk genotypes. This study aimed to explore the use of next-generation sequencing (NGS) technology to analyse a panel of iron metabolism-related genes (HFE, TFR2, HJV, HAMP, SLC40A1, and FTL) in 87 non-classic HH Portuguese patients. A total of 1241 genetic alterations were detected corresponding to 53 different variants, 13 of which were not described in the available public databases. Among them, five were predicted to be potentially pathogenic: three novel mutations in TFR2 [two missense (p.Leu750Pro and p.Ala777Val) and one intronic splicing mutation (c.967-1G>C)], one missense mutation in HFE (p.Tyr230Cys), and one mutation in the 5'-UTR of HAMP gene (c.-25G>A). The results reported here illustrate the usefulness of NGS for targeted iron metabolism-related gene panels, as a likely cost-effective approach for molecular genetics diagnosis of non-classic HH patients. Simultaneously, it has contributed to the knowledge of the pathophysiology of those rare iron metabolism-related disorders.
Resumo:
Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by excessive iron absorption resulting in pathologically increased body iron stores. It is typically associated with common HFE gene mutation (p.Cys282Tyr and p.His63Asp). However, in Southern European populations up to one third of HH patients do not carry the risk genotypes. This study aimed to explore the use of next-generation sequencing (NGS) technology to analyse a panel of iron metabolism-related genes (HFE, TFR2, HJV, HAMP, SLC40A1, and FTL) in 87 non-classic HH Portuguese patients. A total of 1241 genetic alterations were detected corresponding to 53 different variants, 13 of which were not described in the available public databases. Among them, five were predicted to be potentially pathogenic: three novel mutations in TFR2 [two missense (p.Leu750Pro and p.Ala777Val) and one intronic splicing mutation (c.967-1GNC)], one missense mutation in HFE (p.Tyr230Cys), and one mutation in the 5′-UTR of HAMP gene(c.-25GNA). The results reported here illustrate the usefulness of NGS for targeted iron metabolism-related gene panels, as a likely cost-effective approach for molecular genetics diagnosis of non-classic HH patients. Simultaneously, it has contributed to the knowledge of the pathophysiology of those rare iron metabolism-related disorders.
Resumo:
Addition of ferrous sulfate, but not ferric chloride, in micromolar concentrations to rat liver mitochondria induced high rates of consumption of oxygen. The oxygen consumed was several times in excess of the reducing capacity of ferrous-iron (O: Fe ratios 5�8). This occurred in the absence of NADPH or any exogenous oxidizable substrate. The reaction terminated on oxidation of ferrous ions. Malondialdehyde (MDA), measured as thiobarbituric acid-reacting material, was produced indicating peroxidation of lipids. The ratio of O2: MDA was about 4: 1. Pretreatment of mitochondria with ferrous sulfate decreased the rate of oxidation (state 3) with glutamate (+malate) as the substrate by about 40% but caused little damage to energy tranduction process as represented by ratios of ADP: O and respiratory control, as well as calcium-stimulated oxygen uptake and energy-dependent uptake of [45Ca]-calcium. Addition of succinate or ubiquinone decreased ferrous iron-induced lipid peroxidation in intact mitochondria. In frozen-thawed mitochondria, addition of succinate enhanced lipid peroxidation whereas ubiquinone had little effect. These results suggest that ferrous-iron can cause peroxidation of mitochondrial lipids without affecting the energy transduction systems, and that succinate and ubiquinone can offer protection from damage due to such ferrous-iron released from the stores within the cells.
Resumo:
Bacterioferritin (BFR) from Escherichia coli is a member of the ferritin family of iron storage proteins and has the capacity to store very large amounts of iron as an Fe(3+) mineral inside its central cavity. The ability of organisms to tap into their cellular stores in times of iron deprivation requires that iron must be released from ferritin mineral stores. Currently, relatively little is known about the mechanisms by which this occurs, particularly in prokaryotic ferritins. Here we show that the bis-Met-coordinated heme groups of E. coli BFR, which are not found in other members of the ferritin family, play an important role in iron release from the BFR iron biomineral: kinetic iron release experiments revealed that the transfer of electrons into the internal cavity is the rate-limiting step of the release reaction and that the rate and extent of iron release were significantly increased in the presence of heme. Despite previous reports that a high affinity Fe(2+) chelator is required for iron release, we show that a large proportion of BFR core iron is released in the absence of such a chelator and further that chelators are not passive participants in iron release reactions. Finally, we show that the catalytic ferroxidase center, which is central to the mechanism of mineralization, is not involved in iron release; thus, core mineralization and release processes utilize distinct pathways.
New Cadmium(II) and Iron(II) Coordination Frameworks Incorporating a Di(4-Pyridyl)Isoindoline Ligand