993 resultados para Inverse methods
Resumo:
Penguin colonies represent some of the most concentrated sources of ammonia emissions to the atmosphere in the world. The ammonia emitted into the atmosphere can have a large influence on the nitrogen cycling of ecosystems near the colonies. However, despite the ecological importance of the emissions, no measurements of ammonia emissions from penguin colonies have been made. The objective of this work was to determine the ammonia emission rate of a penguin colony using inverse-dispersion modelling and gradient methods. We measured meteorological variables and mean atmospheric concentrations of ammonia at seven locations near a colony of Adélie penguins in Antarctica to provide input data for inverse-dispersion modelling. Three different atmospheric dispersion models (ADMS, LADD and a Lagrangian stochastic model) were used to provide a robust emission estimate. The Lagrangian stochastic model was applied both in ‘forwards’ and ‘backwards’ mode to compare the difference between the two approaches. In addition, the aerodynamic gradient method was applied using vertical profiles of mean ammonia concentrations measured near the centre of the colony. The emission estimates derived from the simulations of the three dispersion models and the aerodynamic gradient method agreed quite well, giving a mean emission of 1.1 g ammonia per breeding pair per day (95% confidence interval: 0.4–2.5 g ammonia per breeding pair per day). This emission rate represents a volatilisation of 1.9% of the estimated nitrogen excretion of the penguins, which agrees well with that estimated from a temperature-dependent bioenergetics model. We found that, in this study, the Lagrangian stochastic model seemed to give more reliable emission estimates in ‘forwards’ mode than in ‘backwards’ mode due to the assumptions made.
Resumo:
Experimental geophysical fluid dynamics often examines regimes of fluid flow infeasible for computer simulations. Velocimetry of zonal flows present in these regimes brings many challenges when the fluid is opaque and vigorously rotating; spherical Couette flows with molten metals are one such example. The fine structure of the acoustic spectrum can be related to the fluid’s velocity field, and inverse spectral methods can be used to predict and, with sufficient acoustic data, mathematically reconstruct the velocity field. The methods are to some extent inherited from helioseismology. This work develops a Finite Element Method suitable to matching the geometries of experimental setups, as well as modelling the acoustics based on that geometry and zonal flows therein. As an application, this work uses the 60-cm setup Dynamo 3.5 at the University of Maryland Nonlinear Dynamics Laboratory. Additionally, results obtained using a small acoustic data set from recent experiments in air are provided.
Resumo:
Inverse analysis is currently an important subject of study in several fields of science and engineering. The identification of physical and geometric parameters using experimental measurements is required in many applications. In this work a boundary element formulation to identify boundary and interface values as well as material properties is proposed. In particular the proposed formulation is dedicated to identifying material parameters when a cohesive crack model is assumed for 2D problems. A computer code is developed and implemented using the BEM multi-region technique and regularisation methods to perform the inverse analysis. Several examples are shown to demonstrate the efficiency of the proposed model. (C) 2010 Elsevier Ltd. All rights reserved,
Resumo:
This paper describes a hybrid numerical method of an inverse approach to the design of compact magnetic resonance imaging magnets. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first, kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. The emphasis of this work is on the optimal design of short MRI magnets. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric MRI magnets as well as asymmetric magnets. The results highlight that the method can be used to obtain a compact MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1 m in length, significantly shorter than current designs. Viable asymmetric magnet designs, in which the edge of the homogeneous region is very close to one end of the magnet system are also presented. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 2000 American Association of Physicists in Medicine. [S0094-2405(00)00303-5].
Resumo:
The image reconstruction using the EIT (Electrical Impedance Tomography) technique is a nonlinear and ill-posed inverse problem which demands a powerful direct or iterative method. A typical approach for solving the problem is to minimize an error functional using an iterative method. In this case, an initial solution close enough to the global minimum is mandatory to ensure the convergence to the correct minimum in an appropriate time interval. The aim of this paper is to present a new, simple and low cost technique (quadrant-searching) to reduce the search space and consequently to obtain an initial solution of the inverse problem of EIT. This technique calculates the error functional for four different contrast distributions placing a large prospective inclusion in the four quadrants of the domain. Comparing the four values of the error functional it is possible to get conclusions about the internal electric contrast. For this purpose, initially we performed tests to assess the accuracy of the BEM (Boundary Element Method) when applied to the direct problem of the EIT and to verify the behavior of error functional surface in the search space. Finally, numerical tests have been performed to verify the new technique.
Resumo:
Background: Nitric oxide (NO) is a major regulator of cardiovascular homeostasis and has anti-atherogenic properties. Reduced NO formation is associated with endothelial dysfunction and with cardiovascular risk factors. Although NO downregulates the expression and activity of the pro-atherogenic enzyme matrix metalloproteinase-9 (MMP-9), no previous clinical study has examined whether endogenous NO formation is inversely associated with the circulating levels of pro-MMP-9, which are associated with cardiovascular events. We examined this hypothesis in 175 healthy male subjects who were non-smokers. Methods: To assess NO bioavailability, the plasma concentrations of nitrite, nitrate, and cGMP were determined using an ozone-based chemiluminescence assay and an enzyme immunoassay. Pro-MMP-9 and pro-MMP-2 levels were measured in plasma samples by gelatin zymography. Results: We found significant negative correlations between pro-MMP-9 levels and plasma nitrite (P=0.035, rs=-0.159), nitrate (P=0.040, rs=-0.158), and cGMP (P=0.011, rs=-0.189) concentrations. However, no significant correlations were found between pro-MMP-2 levels and the plasma concentrations of markers of NO bioavailability (all P>0.05). Conclusions: There is an inverse relationship between markers of NO formation and plasma MMP-9 levels. This finding may shed some light on the possible mechanisms involved in the increased cardiovascular risk of apparently healthy subjects with low NO bioavailability or high circulating levels of pro-MMP-9. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we look at three models (mixture, competing risk and multiplicative) involving two inverse Weibull distributions. We study the shapes of the density and failure-rate functions and discuss graphical methods to determine if a given data set can be modelled by one of these models. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents a new predictive digital control method applied to Matrix Converters (MC) operating as Unified Power Flow Controllers (UPFC). This control method, based on the inverse dynamics model equations of the MC operating as UPFC, just needs to compute the optimal control vector once in each control cycle, in contrast to direct dynamics predictive methods that needs 27 vector calculations. The theoretical principles of the inverse dynamics power flow predictive control of the MC based UPFC with input filter are established. The proposed inverse dynamics predictive power control method is tested using Matlab/Simulink Power Systems toolbox and the obtained results show that the designed power controllers guarantees decoupled active and reactive power control, zero error tracking, fast response times and an overall good dynamic and steady-state response.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
The α(1b)-adrenergic receptor (AR) was, after rhodopsin, the first G protein-coupled receptor (GPCR) in which point mutations were shown to trigger constitutive (agonist-independent) activity. Constitutively activating mutations have been found in other AR subtypes as well as in several GPCRs. This chapter briefly summarizes the main findings on constitutively active mutants of the α(1a)- and α(1b)-AR subtypes and the methods used to predict activating mutations, to measure constitutive activity of Gq-coupled receptors and to investigate inverse agonism. In addition, it highlights the implications of studies on constitutively active AR mutants on elucidating the molecular mechanisms of receptor activation and drug action.
Resumo:
Oxidative modification of LDL is thought to play an important role in the development of atherosclerosis. Susceptibility of LDL to peroxidation may partly depend on the compositional characteristics of the antioxidant and fatty acid content. The aim of this study was to examine the association between levels of antibodies to oxidized LDL and the various serum fatty acids in women. A total of 465 women aged 18-65 years were selected randomly from the adult population census of Pizarra, a town in southern Spain. Measurement of anti-oxidized-LDL was done by ELISA and the fatty acid composition of serum phospholipids was determined by GC. The levels of anti-oxidized-LDL antibodies were significantly related with age (r - 0.341, P < 0.001), BMI (r - 0.239, P < 0.001), waist:hip ratio (r - 0.285, P < 0.001), glucose (r - 0.208, P < 0.001), cholesterol (r - 0.243, P < 0.001), LDL-cholesterol (r - 0.185, P = 0.002), EPA (r - 0.159, P = 0.003), DHA (r - 0.121, P = 0.026), and the sum of the serum phospholipid n-3 PUFA (r - 0.141, P = 0.009). Multiple regression analysis showed that the variables that explained the behaviour of the levels of anti-oxidized-LDL antibodies were age (P < 0.001) and the serum phospholipid EPA (P < 0.001). This study showed that the fatty acid composition of serum phospholipids, and especially the percentage of EPA, was inversely related with the levels of anti-oxidized-LDL antibodies.
Resumo:
BACKGROUND Adipose tissue is a key regulator of energy balance playing an active role in lipid storage and may be a dynamic buffer to control fatty acid flux. Just like PPARgamma, fatty acid synthesis enzymes such as FASN have been implicated in almost all aspects of human metabolic alterations such as obesity, insulin resistance or dyslipemia. The aim of this work is to investigate how FASN and PPARgamma expression in human adipose tissue is related to carbohydrate metabolism dysfunction and obesity. METHODS The study included eighty-seven patients which were classified according to their BMI and to their glycaemia levels in order to study FASN and PPARgamma gene expression levels, anthropometric and biochemical variables. RESULTS The main result of this work is the close relation between FASN expression level and the factors that lead to hyperglycemic state (increased values of glucose levels, HOMA-IR, HbA1c, BMI and triglycerides). The correlation of the enzyme with these parameters is inversely proportional. On the other hand, PPARgamma is not related to carbohydrate metabolism. CONCLUSIONS We can demonstrate that FASN expression is a good candidate to study the pathophysiology of type II diabetes and obesity in humans.