952 resultados para Inverse analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a novel constitutive model of lung parenchyma, which can be used for continuum mechanics based predictive simulations. To develop this model, we experimentally determined the nonlinear material behavior of rat lung parenchyma. This was achieved via uni-axial tension tests on living precision-cut rat lung slices. The resulting force-displacement curves were then used as inputs for an inverse analysis. The Levenberg-Marquardt algorithm was utilized to optimize the material parameters of combinations and recombinations of established strain-energy density functions (SEFs). Comparing the best-fits of the tested SEFs we found Wpar = 4.1 kPa(I1-3)2 + 20.7 kPa(I1 - 3)3 + 4.1 kPa(-2 ln J + J2 - 1) to be the optimal constitutive model. This SEF consists of three summands: the first can be interpreted as the contribution of the elastin fibers and the ground substance, the second as the contribution of the collagen fibers while the third controls the volumetric change. The presented approach will help to model the behavior of the pulmonary parenchyma and to quantify the strains and stresses during ventilation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The diversity of non-domestic buildings at urban scale poses a number of difficulties to develop building stock models. This research proposes an engineering-based bottom-up stock model in a probabilistic manner to address these issues. School buildings are used for illustrating the application of this probabilistic method. Two sampling-based global sensitivity methods are used to identify key factors affecting building energy performance. The sensitivity analysis methods can also create statistical regression models for inverse analysis, which are used to estimate input information for building stock energy models. The effects of different energy saving measures are analysed by changing these building stock input distributions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently developed equipment allows measurement of the shear modulus of soil in situ as a function of level of strain. In these field experiments, the excitation is applied on the ground surface using large scale shakers, and the response of the soil deposit is recorded through embedded receivers. The focus of this paper is on the simulation of signals which would be recorded at the receiver locations in idealized conditions to provide guidelines on the interpretation of field measurements. Discrete and finite element methods are employed to model one dimensional and three dimensional geometries, respectively, under various lateral boundary conditions. When the first times of arrival are detected by receivers under the vertical impulse, they coincide with the arrival of the P wave, related to the constrained modulus of the material, regardless of lateral boundary conditions. If one considers, on the other hand, phase differences between the motions at two receivers the picture is far more complicated and one would obtain propagation velocities, function of frequency and depth, which do not correspond to either the constrained modulus or Young's modulus. It is thus necessary to apply some care when interpreting the data from field tests based on vertical steady state vibrations. The use of inverse analysis can be considered as a way of extracting the shear modulus of soil from the field test measurements. © 2008 ASCE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solder constitutive models are important as they are widely used in FEA simulations to predict the lifetime of soldered assemblies. This paper briefly reviews some common constitutive laws to capture creep in solder and presents work on laws capturing both kinematic hardening and damage. Inverse analysis is used to determine constants for the kinematic hardening law which match experimental creep curves. The mesh dependence of the damage law is overcome by using volume averaging and is applied to predict the crack path in a thermal cycled resistor component

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims. We present an inversion method based on Bayesian analysis to constrain the interior structure of terrestrial exoplanets, in the form of chemical composition of the mantle and core size. Specifically, we identify what parts of the interior structure of terrestrial exoplanets can be determined from observations of mass, radius, and stellar elemental abundances. Methods. We perform a full probabilistic inverse analysis to formally account for observational and model uncertainties and obtain confidence regions of interior structure models. This enables us to characterize how model variability depends on data and associated uncertainties. Results. We test our method on terrestrial solar system planets and find that our model predictions are consistent with independent estimates. Furthermore, we apply our method to synthetic exoplanets up to 10 Earth masses and up to 1.7 Earth radii, and to exoplanet Kepler-36b. Importantly, the inversion strategy proposed here provides a framework for understanding the level of precision required to characterize the interior of exoplanets. Conclusions. Our main conclusions are (1) observations of mass and radius are sufficient to constrain core size; (2) stellar elemental abundances (Fe, Si, Mg) are principal constraints to reduce degeneracy in interior structure models and to constrain mantle composition; (3) the inherent degeneracy in determining interior structure from mass and radius observations does not only depend on measurement accuracies, but also on the actual size and density of the exoplanet. We argue that precise observations of stellar elemental abundances are central in order to place constraints on planetary bulk composition and to reduce model degeneracy. We provide a general methodology of analyzing interior structures of exoplanets that may help to understand how interior models are distributed among star systems. The methodology we propose is sufficiently general to allow its future extension to more complex internal structures including hydrogen- and water-rich exoplanets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta uma nova metodologia para elastografia virtual em imagens simuladas de ultrassom utilizando métodos numéricos e métodos de visão computacional. O objetivo é estimar o módulo de elasticidade de diferentes tecidos tendo como entrada duas imagens da mesma seção transversal obtidas em instantes de tempo e pressões aplicadas diferentes. Esta metodologia consiste em calcular um campo de deslocamento das imagens com um método de fluxo óptico e aplicar um método iterativo para estimar os módulos de elasticidade (análise inversa) utilizando métodos numéricos. Para o cálculo dos deslocamentos, duas formulações são utilizadas para fluxo óptico: Lucas-Kanade e Brox. A análise inversa é realizada utilizando duas técnicas numéricas distintas: o Método dos Elementos Finitos (MEF) e o Método dos Elementos de Contorno (MEC), sendo ambos implementados em Unidades de Processamento Gráfico de uso geral, GpGPUs ( \"General Purpose Graphics Units\" ). Considerando uma quantidade qualquer de materiais a serem determinados, para a implementação do Método dos Elementos de Contorno é empregada a técnica de sub-regiões para acoplar as matrizes de diferentes estruturas identificadas na imagem. O processo de otimização utilizado para determinar as constantes elásticas é realizado de forma semi-analítica utilizando cálculo por variáveis complexas. A metodologia é testada em três etapas distintas, com simulações sem ruído, simulações com adição de ruído branco gaussiano e phantoms matemáticos utilizando rastreamento de ruído speckle. Os resultados das simulações apontam o uso do MEF como mais preciso, porém computacionalmente mais caro, enquanto o MEC apresenta erros toleráveis e maior velocidade no tempo de processamento.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Osteocytes are the mature cells and perform as mechanosensors within the bone. The mechanical property of osteocytes plays an important role to fulfill these functions. However, little researches have been done to investigate the mechanical deformation properties of single osteocytes. Atomic Force Microscopy (AFM) is a state-of-art experimental facility for high resolution imaging of tissues, cells and any surfaces as well as for probing mechanical properties of the samples both qualitatively and quantitatively. In this paper, the experimental study based on AFM is firstly used to obtain forceindentation curves of single round osteocytes. The porohyperelastic (PHE) model of a single osteocyte is then developed by using the inverse finite element analysis (FEA) to identify and extract mechanical properties from the experiment results. It has been found that the PHE model is a good candidature for biomechanics studies of osteocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to determine the creep and relaxation responses of single chondrocytes in vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of single chondrocytes at the strain-rate of 7.05 s-1. This result was then employed in inverse finite element analysis (FEA) using porohyperelastic (PHE) idealization of the cells to determine their mechanical properties. The PHE model results agreed well with AFM experimental data. This PHE model was then utilized to study chondrocyte’s creep and relaxation behaviors. The results revealed that the effect of fluid was predominant for cell’s mechanical behaviors and that the PHE is a good model for biomechanics studies of chondrocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to determine the strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes, in vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of these single cells at four different strain-rates. These results were then employed in inverse finite element analysis (FEA) using Modified Standard neo-Hookean Solid (MSnHS) idealization of these cells to determine their mechanical properties. In addition, a FEA model with a newly developed spring element was employed to accurately simulate AFM evaluation in this study. We report that both cytoskeleton (CSK) and intracellular fluid govern the strain-rate-dependent mechanical property of living cells whereas intracellular fluid plays a predominant role on fixed cells’ behavior. In addition, through the comparisons, it can be concluded that osteocytes are stiffer than chondrocytes at all strain-rates tested indicating that the cells could be the biomarker of their tissue origin. Finally, we report that MSnHS is able to capture the strain-rate-dependent mechanical behavior of osteocyte and chondrocyte for both living and fixed cells. Therefore, we concluded that the MSnHS is a good model for exploration of mechanical deformation responses of single osteocytes and chondrocytes. This study could open a new avenue for analysis of mechanical behavior of osteocytes and chondrocytes as well as other similar types of cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of structural damage detection based on measured frequency response functions of the structure in its damaged and undamaged states is considered. A novel procedure that is based on inverse sensitivity of the singular solutions of the system FRF matrix is proposed. The treatment of possibly ill-conditioned set of equations via regularization scheme and questions on spatial incompleteness of measurements are considered. The application of the method in dealing with systems with repeated natural frequencies and (or) packets of closely spaced modes is demonstrated. The relationship between the proposed method and the methods based on inverse sensitivity of eigensolutions and frequency response functions is noted. The numerical examples on a 5-degree of freedom system, a one span free-free beam and a spatially periodic multi-span beam demonstrate the efficacy of the proposed method and its superior performance vis-a-vis methods based on inverse eigensensitivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of identifying parameters of time invariant linear dynamical systems with fractional derivative damping models, based on a spatially incomplete set of measured frequency response functions and experimentally determined eigensolutions, is considered. Methods based on inverse sensitivity analysis of damped eigensolutions and frequency response functions are developed. It is shown that the eigensensitivity method requires the development of derivatives of solutions of an asymmetric generalized eigenvalue problem. Both the first and second order inverse sensitivity analyses are considered. The study demonstrates the successful performance of the identification algorithms developed based on synthetic data on one, two and a 33 degrees of freedom vibrating systems with fractional dampers. Limited studies have also been conducted by combining finite element modeling with experimental data on accelerances measured in laboratory conditions on a system consisting of two steel beams rigidly joined together by a rubber hose. The method based on sensitivity of frequency response functions is shown to be more efficient than the eigensensitivity based method in identifying system parameters, especially for large scale systems.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An implementation of the inverse vector Jiles-Atherton model for the solution of non-linear hysteretic finite element problems is presented. The implementation applies the fixed point method with differential reluctivity values obtained from the Jiles-Atherton model. Differential reluctivities are usually computed using numerical differentiation, which is ill-posed and amplifies small perturbations causing large sudden increases or decreases of differential reluctivity values, which may cause numerical problems. A rule based algorithm for conditioning differential reluctivity values is presented. Unwanted perturbations on the computed differential reluctivity values are eliminated or reduced with the aim to guarantee convergence. Details of the algorithm are presented together with an evaluation of the algorithm by a numerical example. The algorithm is shown to guarantee convergence, although the rate of convergence depends on the choice of algorithm parameters. © 2011 IEEE.