973 resultados para Intrinsic ferromagnetism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intrinsic laryngeal muscles display unique structural and functional characteristics that distinguish them from the skeletal muscle of the trunk and limbs. These features include relatively small muscle fibers, super-fast contraction speed, and fatigue resistance. The molecular basis of tissue-specific functions and other characteristics is differential gene expression. Accordingly, we have investigated the molecular basis of the functional specialization of the intrinsic laryngeal muscles by examining the expression of two key genes in the larynx, known to be important for skeletal muscle development and function: (a) the muscle regulatory factor, Myf-5, and (b) the superfast-contracting myosin heavy chain (EO-MyHC). We have found that the adult thyroarytenoid muscles express much higher levels of both Myf-5 and EO-MyHC messenger ribonucleic acid (mRNA), compared to lower hindlimb skeletal muscle where Myf-5 mRNA levels are very low and EO-MyHC is not detectable. These findings suggest that the unique functional characteristics of the intrinsic laryngeal muscles may be based in laryngeal muscle-specific gene expression directed by a unique combination of muscle regulatory factors. Such laryngeal muscle-specific genes may allow the future development of new treatments for laryngeal muscle dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants have multiple potassium (K+) uptake and efflux mechanisms that are expressed throughout plant tissues to fulfill different physiological functions. Several different classes of K+ channels and carriers have been identified at the molecular level in plants. K+ transporters of the HKT1 superfamily have been cloned from wheat (Triticum aestivum), Arabidopsis, and Eucalyptus camaldulensis. The functional characteristics as well as the primary structure of these transporters are diverse with orthologues found in bacterial and fungal genomes. In this report, we provide a detailed characterization of the functional characteristics, as expressed in Xenopus laevis oocytes, of two cDNAs isolated from E. camaldulensis that encode proteins belonging to the HKT1 superfamily of K+/Na+ transporters. The transport of K+ in EcHKT-expressing oocytes is enhanced by Na+, but K+ was also transported in the absence of Na+. Na+ is transported in the absence of K+ as has been demonstrated for HKT1 and AtHKT1. Overall, the E. camaldulensis transporters show some similarities and differences in ionic selectivity to HKT1 and AtHKT1. One striking difference between HKT1 and EcHKT is the sensitivity to changes in the external osmolarity of the solution. Hypotonic solutions increased EcHKT induced currents in oocytes by 100% as compared with no increased current in HKT1 expressing or uninjected oocytes. These osmotically sensitive currents were not enhanced by voltage and may mediate water flux. The physiological function of these osmotically induced increases in currents may be related to the ecological niches that E. camaldulensis inhabits, which are periodically flooded. Therefore, the osmosensing function of EcHKT may provide this species with a competitive advantage in maintaining K+ homeostasis under certain conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pancreas is a relative newcomer to the stable of tissues with an intrinsic angiotensin-generating system. The involvement of this system in pancreatic activity will be dependent on the angiotensin-generating paths present in the pancreas and their precise cellular location. Thus far, renin, angiotensin-converting enzyme (ACE), angiotensin II and AT1 and AT2 receptors have been found. These are components of the "classical" renin-angiotensin system. But there is uncertainty as to their location and site of action. Furthermore, it is not known which, if any, alternative enzymes to renin and ACE are present, which angiotensins in addition to angiotensin II are generated and whether or not there are receptors to angiotensin IV and angiotensin-(1-7). Future research should focus on these aspects in order to provide a mechanistic basis to pancreatic physiological functions and to pathological conditions of clinical relevance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The distribution of lesions from dental erosion due to intrinsic acid regurgitation and vomiting may be different from patterns of dental erosion due to extrinsic acids. To date studies have failed to validate this assumption. This study described the sites and nature of lesions from dental erosion in cases of intrinsic acid regurgitation, and compared them with the distribution of lesions occurring in age and sex matched controls, whose lesions are due to extrinsic acids. Methods: The University of Queensland tooth wear clinic patients were screened to select 30 cases, 21 self-identified bulimics and nine medically diagnosed chronic gastric acid regurgitators, and 30 controls. Epoxy resin models of the subjects' dentition were examined under stereoscopic light microscope at magnification 16 to 40. The patterns and sites of tooth wear were recorded for teeth representative of 20 tooth sites in every subject. Results: While the incisal edges of maxillary and mandibular anterior teeth of acid regurgitators were more frequently affected by erosion, incisal attrition was more common on controls' teeth. Cervical lesions were more commonly found in association with incisal attrition in the controls, and in association with incisal erosion in the cases. In 10 per cent of sites in case subjects, cervical lesions associated with incisal erosion were found on the lingual aspects of their mandibular incisors, canines and premolars. These lesions were almost exclusive to the case subjects. Conclusions: These results validate that lingual cervical lesions associated with incisal erosion on the mandibular anterior teeth are strong discriminators between tooth wear in patients with bulimia nervosa or chronic gastro-oesophageal reflux and those whose dental erosion is due to extrinsic acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Androgens play an important role in regulating the central obesity that is a strong risk factor for cardiovascular disease and insulin resistance. This study confirms that androgen receptors are present in subcultured human preadipocytes, with androgen receptor gene expression and saturable specific dihydrotestosterone binding, dissociation constant 1.02 - 2.56 nM and maximal binding capacity 30.8 - 55.7 fmol/mg protein. There was an intrinsic regional difference in androgen receptor complement, with more androgen receptors in visceral than in subcutaneous preadipocytes. Dihydrotestosterone was metabolised by human preadipocytes, with more androstanediol produced by subcutaneous than visceral preadipocytes. While dihydrotestosterone metabolism was insufficient to explain the regional variation in androgen binding, both of these differences would reduce the androgen responsiveness of the subcutaneous preadipocytes compared with visceral preadipocytes. There were no gender differences in androgen binding or metabolism. While the direct effects of androgens on human PAS remain uncertain, these regional differences suggest that AR-mediated regulation of certain PA functions influences adipose tissue distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression and properties of ionic channels were investigated in dissociated neurons from neonatal and adult rat intracardiac ganglia. Changes in the hyperpolarization-activated and ATP-sensitive K+ conductances during postnatal development and their role in neuronal excitability were examined. The hyperpolarization-activated nonselective cation current, I-h, was observed in all neurons studied and displayed slow time-dependent rectification. An inwardly rectifying K+ current, I-K(I), was present in a population of neurons from adult but not neonatal rats and was sensitive to block by extracellular Ba2+. Using the perforated-patch recording configuration, an ATP-sensitive K+ (K-ATP) conductance was identified in greater than or equal to 50% of intracardiac neurons from adult rats. Levcromakalim evoked membrane hyperpolarization, which was inhibited by the sulphonylurea drugs. glibenclamide and tolbutamide. Exposure to hypoxic conditions also activated a membrane current similar to that induced by levcromakalim and was inhibited by glibenclamide. Changes in the complement of ion channels during postnatal development may underlie observed differences in the function of intracardiac ganglion neurons during maturation. Furthermore, activation of hyperpolarization-activated and KATP channels in mammalian intracardiac neurons may play a role in neural regulation of the mature heart and cardiac function during ischaemia-reperfusion. (C) 2002 Elsevier Science B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the reproductive biology of organisms, a continuum exists from "highly reproductive species" at one end to "survivor species" at the other end. Among other factors, the position of a species along this continuum affects its sensitivity to human exploitation and its vulnerability to extinction. Flying foxes are long-lived, seasonal breeders, with a rigid, well-defined breeding season that is largely or wholly genetically determined. Unlike opportunistic, highly reproductive species, such as rabbits or mice, female flying foxes are unable to produce viable young before their second or third year of life, and are then capable of producing just one young per year. Such a breeding strategy will be successful only if flying-foxes are long-lived and suffer naturally low mortality rates. In this paper, we assess the vulnerability of flying foxes to extinction, using basic parameters of reproduction observed in the wild, and in captive breeding colonies of P. poliocephalus, P. alecto and P. scapulatus, and survival rates that are likely to apply to Australian conditions. Our models show explicitly that flying-fox populations have a very low capacity for increase, even under the most ideal conditions. The implications of our models are discussed in reference to the long-term management and conservation needs of Australian flying foxes. We conclude that current death-rates of flying-foxes in NSW and Queensland fruit orchards are putting state populations at serious risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution presents novel concepts for analysis of pressure–volume curves, which offer information about the time domain dynamics of the respiratory system. The aim is to verify whether a mapping of the respiratory diseases can be obtained, allowing analysis of (dis)similarities between the dynamical pattern in the breathing in children. The groups investigated here are children, diagnosed as healthy, asthmatic, and cystic fibrosis. The pressure–volume curves have been measured by means of the noninvasive forced oscillation technique during breathing at rest. The geometrical fractal dimension is extracted from the pressure–volume curves and a power-law behavior is observed in the data. The power-law model coefficients are identified from the three sets and the results show that significant differences are present between the groups. This conclusion supports the idea that the respiratory system changes with disease in terms of airway geometry, tissue parameters, leading in turn to variations in the fractal dimension of the respiratory tree and its dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional order modeling of biological systems has received significant interest in the research community. Since the fractal geometry is characterized by a recurrent structure, the self-similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. To demonstrate the link between the recurrence of the respiratory tree and the appearance of a fractional-order model, we develop an anatomically consistent representation of the respiratory system. This model is capable of simulating the mechanical properties of the lungs and we compare the model output with in vivo measurements of the respiratory input impedance collected in 20 healthy subjects. This paper provides further proof of the underlying fractal geometry of the human lungs, and the consequent appearance of constant-phase behavior in the total respiratory impedance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Journal of Proteome Research (2006)5: 2720-2726

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike injury to the peripheral nervous system (PNS), where injured neurons can trigger a regenerative program that leads to axonal elongation and in some cases proper reinnervation, after injury to the central nervous system (CNS) neurons fail to produce the same response. The regenerative program includes the activation of several injury signals that will lead to the expression of genes associated with axonal regeneration. As a consequence, the spawned somatic response will ensure the supply of molecular components required for axonal elongation. The capacity of some neurons to trigger a regenerative response has led to investigate the mechanisms underlying neuronal regeneration. Thus, non-regenerative models (like injury to the CNS) and regenerative models (such as injury to the PNS) were used to understand the differences underlying those two responses to injury. To do so, the regenerative properties of dorsal root ganglion (DRG) neurons were addressed. This particular type of neurons possesses two branches, a central axon, that has a limited capacity to regenerate; and a peripheral axon, where regeneration can occur over long distances. In the first paradigm used to understand the neuronal regeneration mechanisms, we evaluated the activation of injury signals in a non-regenerative model. Injury signals include the positive injury signals, which are described as being enhancers of axonal regeneration by activating several transcription factors. The currently known positive injury signals are ERK, JNK and STAT3. To evaluate whether the lack of regeneration following injury to the central branch of DRG neurons was due to inactivation of these signals, activation of the transcription factors pELK-1, p-c-jun (downstream targets of ERK and JNK, respectively) and pSTAT3 were examined. Results have shown no impairment in the activation of these signals. As a consequence, we further proceed with evaluation of other candidates that could participate in axonal regeneration failure. By comparing the protein profiles that were triggered following either injury to the central branch of DRG neurons or injury to their peripheral branch, we were able to identify high levels of GSK3-β, ROCKII and HSP-40 after injury to the central branch of DRG neurons. While in vitro knockdown of HSP-40 in DRG neurons showed to be toxic for the cells, evaluation of pCRMP2 (a GSK3-β downstream target) and pMLC (a ROCKII downstream target), which are known to impair axonal regeneration, revealed high levels of both proteins following injury to the central branch when comparing with injury to their peripheral one. Altogether, these results suggest that activation of positive injury signals is not sufficient to elicit axonal regeneration; HSP-40 is likely to participate in the cell survival program; whereas GSK3-β and ROCKII activity may condition the regenerative capacity following injury to the nervous system.(...)