979 resultados para Intra seasonal oscillation
Resumo:
Dissertação de Mestrado, Estudos Integrados dos Oceanos, 20 de Março de 2014, Universidade dos Açores.
Resumo:
This study focuses on the south –west monsoon rainfall over Kerala and its variability both on the spatial and temporal scales. The main objectives of the study are, interanual, long-term and decadal variabilities in MRF(monsoon rain fall),relationship between antecedent global circulation parameters, diurnal variability using data of a large number of stations in Kerala and the spatial distribution of rainfall under two large scale synoptic. Kerala gets nearly 190cm of rainfall during the south-west monsoon season 1st June to 30th September. This is more than twice the monsoon rainfall of India. A good part of kerala’s rainfall is caused by the orography of the Western Ghats Mountain ranges. The state receives 286cm of annual rainfall of which 68%is during the south-west monsoon season. The summer monsoon rainfall of Kerala shows a decreasing trend of 12.0%in 96 years. The study shows that the Intra Seasonal Oscillations(ISO) of the monsoon season has large interanual variability,some years having long period and other years having short period ISO. It is seen that Western Ghats has a strong control on the east west profile on the monsoon rainfall.
Resumo:
The African Easterly Jet-Easterly Wave (AEJ-AEW) system was explored in an idealised model. Prescribed zonally symmetric surface temperature and moisture profiles determine the AEJ which becomes established through meridional contrasts in dry and moist convection.As in previous studies, a realistic AEJ developed with only dry convection. Including moist processes, increased its development rate, but reduced its speed and meridional extent. AEWs grew through barotropic-baroclinic conversions. Negative meridional potential vorticity (PV) gradients arose in the zonally symmetric state through the intrusion of the low-PV Saharan boundary layer. Since moist processes strengthened this significantly through diabatically generated PV in the Intertropical Convergence Zone, moist AEWs were three times stronger. Larger barotropic conversions and faster AEJ development increased the moist wave growth-rate. Jet-level and northerly low-level amplitudes grew, but in the moist case the low-level amplitudes weakened as the AEW interacted with convection, consistent with their absence from observations during the peak monsoon. Striking dependencies between the AEJ, AEW and rainfall existed. Two time-scales governed their evolution, depending on the transfer coefficients: (1) the AEJ's replenishment rate influenced by heat fluxes, and (2) the wave growth-rate, by damping, and the slower jet development rate.Moist AEWs were characterized by intermittent growth/decay, with growth preceded by increased mean rainfall and later, weakening AEJs. These dependencies established an internal 8-10-day variability, consistent with intra-seasonal observations of 9-day rainy sequences. This internal variability offers an alternative explanation to the previously proposed external forcing and a new view of the moist AEW life cycle. Copyright © 2009 Royal Meteorological Society
Resumo:
Monsoon droughts over the Indian subcontinent emanate from failures in the seasonal (June-September) monsoon rains. While prolonged dry-spells ("monsoon-breaks'') pervade on sub-seasonal/intra-seasonal time-scales, the underlying causes for these long-lasting anomalies remain elusive. Based on analyses of a suite of observed data sets, we report an ocean-atmosphere dynamical coupling on intra-seasonal time-scales, in the tropical Indian Ocean, which is pivotal in forcing extended monsoon-breaks and causing droughts over the subcontinent. This coupling involves a feedback between the monsoonal flow and thermocline depth in the Equatorial Eastern Indian Ocean (EEIO), in which an anomaly of the summer monsoon circulation induces downwelling and maintains a higher-than-normal heat-content. The near-equatorial anomalies induce strong and sustained suppression of monsoon rainfall over the subcontinent. It is concluded that the intra-seasonal evolution of the ocean-monsoon coupled system is a vital key to unlocking the dynamics of monsoon droughts.
Resumo:
[1] This work examines the main sources of moisture over Central Brazil and La Plata Basin during the year through a new Lagrangian diagnosis method which identifies the humidity contributions to the moisture budget over a region. This methodology computes budgets of evaporation minus precipitation by calculating changes in the specific humidity along back-trajectories for the previous 10 d. The origin of all air masses residing over each region was tracked during a period of 5 years (2000-2004). These regions were selected because they coincide with two centers of action of a known dipole precipitation variability mode observed in different temporal scales (from intra seasonal up to inter decadal timescales) and are related to the climatic variability of the South American Monsoon System. The results suggested the importance of the tropical south Atlantic as a moisture source for Central Brazil, and of recycling for La Plata basin. It seems that the Tropical South Atlantic plays an important role as a moisture source for Central Brazil and La Plata basin along the year, particularly during the austral summer. The north Atlantic is also an additional source for both regions during the austral summer.
Resumo:
During monthly samplings between September 1998 and August 2000. 3,660 specimens of Ucides cordatus (Linnaeus, 1763) (2054 males and 1606 females) were obtained and examined for size (CW carapace width) to determine growth-age equations for each sex. This species showed a slower growth, with a marked seasonal oscillation, in females as compared to males, suggesting application of the seasonal and nonseasonal von Bertalanffy growth model, respectively. CW∝ and k constant were closely similar for the two sexes (CW∝ (male) = 90.3 mm: CW∝ (female) = 88.6 mm; k(male) = 0.28; k(female) = 0.26). The age at sexual maturity was estimated to be around 3 years, while the age at legal size (CW = 60 mm) was 3.8 and 4.7 years for males and females, respectively. In the laboratory, juvenile stages did not show differences in growth rates under the same temperature and photoperiod conditions.
Resumo:
Climate affects the timing, rate and dynamics of tree growth, over time scales ranging from seconds to centuries. Monitoring how a tree's stem radius varies over these time scales can provide insight into intra-annual stem dynamics and improve our understanding of climate impacts on tree physiology and growth processes. Here, we quantify the response of radial conifer stem size to environmental fluctuations via a novel assessment of tree circadian cycles. We analyze four years of sub-hourly data collected from 56 larch and spruce trees growing along a natural temperature gradient of ∼6 °C in the central Swiss Alps. During the growing season, tree stem diameters were greatest at mid-morning and smallest in the late evening, reflecting the daily cycle of water uptake and loss. Along the gradient, amplitudes calculated from the stem radius cycle were ∼50% smaller at the upper site (∼2200 m a.s.l.) relative to the lower site (∼800 m a.s.l.). We show changes in precipitation, temperature and cloud cover have a substantial effect on typical growing season diurnal cycles; amplitudes were nine times smaller on rainy days (>10 mm), and daily amplitudes are approximately 40% larger when the mean daily temperature is 15–20 °C than when it is 5–10 °C. We find that over the growing season in the sub-alpine forests, spruce show greater daily stem water movement than larch. However, under projected future warming, larch could experience up to 50% greater stem water use, which may severely affect future growth on already dry sites. Our data further indicate that because of the confounding influences of radial growth and short-term water dynamics on stem size, conventional methodology probably overstates the effect of water-linked meteorological variables (i.e. precipitation and relative humidity) on intra-annual tree growth. We suggest future studies use intra-seasonal measurements of cell development and consider whether climatic factors produce reversible changes in stem diameter. These study design elements may help researchers more accurately quantify and attribute changes in forest productivity in response to future warming.
Resumo:
Thawing-induced cliff top retreat in permafrost landscapes is mainly due to thermo-erosion. Ground-ice-rich permafrost landscapes are specifically vulnerable to thermo-erosion and may show high degradation rates. Within the HGF Alliance Remote Sensing and the FP7 PAGE21 permafrost programs we investigated how SAR and optical remote sensing can contribute to the monitoring of erosion rates of ice-rich cliffs in Arctic Siberia (Lena Delta, Russia). We produced two different vector products: i) Intra-annual cliff top retreat based on TerraSAR-X (TSX) satellite data (2012-2014): High-temporal resolution time series of TSX satellite data allow the inter-annual and intra-annual monitoring of the upper cliff-line retreat also under bad weather conditions and continuous cloud coverage. This published SAR product contains the retreating upper cliff lines of a 1.5 km long part of eroding ice-rich coast of Kurungnakh Island in the central Lena Delta. The upper cliff line was mapped using a thresholding approach for images acquired in the years 2012, 2013 and 2014 for the months June (2013, 2014), July (2013, 2014), August (2012, 2013, 2014) and September (2013, 2014). The cliff top retreat vector product is called 'upper_cliff_TerraSAR-X'. While the 2014 cliff lines show a clear retreat of 2 to 3 m/month, the cliff top lines for 2012 and 2013 are not chronologically ordered. However, lines from the end of the season of a year are always close to the lines from the beginning of the next summer season, indicating low cliff retreat in winter. ii) 4-year cliff top retreat based on optical satellite data (2010-2014): Long-term cliff top retreat could be assessed with two high-spatial resolution optical satellite images (GeoEye-1, 2010-08-05 and Worldview-1, 2014-08-19). The cliff top retreat vector product is called 'upper_cliff_optical'. Results: The long-term cliff top retreat derived from optical satellite data are 35 m cliff retreat within 4 years. The higher-temporal resolution SAR data equivalently show long-term rates of 18 m within 2 years and nearly now degradation activities in winter but maximum erosion rates in summer months.The Intra-seasonal cliff top retreat lines from 2014 show a rate of 2 to 3 m per month.
Resumo:
SST variability within the Atlantic cold tongue (ACT) region is of climatic relevance for the surrounding continents. A multi cruise data set of microstructure observations is used to infer regional as well as seasonal variability of upper ocean mixing and diapycnal heat flux within the ACT region. The variability in mixing intensity is related to the variability in large scale background conditions, which were additionally observed during the cruises. The observations indicate fundamental differences in background conditions in terms of shear and stratification below the mixed layer (ML) for the western and eastern equatorial ACT region causing critical Froude numbers (Fr) to be more frequently observed in the western equatorial ACT. The distribution of critical Fr occurrence below the ML reflects the regional and seasonal variability of mixing intensity. Turbulent dissipation rates (?) at the equator (2°N-2°S) are strongly increased in the upper thermocline compared to off-equatorial locations. In addition, ? is elevated in the western equatorial ACT compared to the east from May to November, whereas boreal summer appears as the season of highest mixing intensities throughout the equatorial ACT region, coinciding with ACT development. Diapycnal heat fluxes at the base of the ML in the western equatorial ACT region inferred from ? and stratification range from a maximum of 90 Wm-2 in boreal summer to 55 Wm-2 in September and 40 Wm-2 in November. In the eastern equatorial ACT region maximum values of about 25 Wm-2 were estimated during boreal summer reducing to about 5 Wm-2 towards the end of the year. Outside the equatorial region, inferred diapycnal heat fluxes are comparably low rarely exceeding 10 Wm-2. Integrating the obtained heat flux estimates in the ML heat budget at 10°W on the equator accentuates the diapycnal heat flux as the largest ML cooling term during boreal summer and early autumn. In the western equatorial ACT elevated meridional velocity shear in the upper thermocline contributes to the enhanced diapycnal heat flux within this region during boreal summer and autumn. The elevated meridional velocity shear appears to be associated with intra-seasonal wave activity.
Resumo:
Understanding the response of the Antarctic ice sheets during the rapid climatic change that accompanied the last deglaciation has implications for establishing the susceptibility of these regions to future 21st Century warming. A unique diatom d18O record derived from a high-resolution deglacial seasonally laminated core section off the west Antarctic Peninsula (WAP) is presented here. By extracting and analysing single species samples from individual laminae, season-specific isotope records were separately generated to show changes in glacial discharge to the coastal margin during spring and summer months. As well as documenting significant intra-annual seasonal variability during the deglaciation, with increased discharge occurring in summer relative to spring, further intra-seasonal variations are apparent between individual taxa linked to the environment that individual diatom species live in. Whilst deglacial d18O are typically lower than those for the Holocene, indicating glacial discharge to the core site peaked at this time, inter-annual and inter-seasonal alternations in excess of 3 per mil suggest significant variability in the magnitude of these inputs. These deglacial variations in glacial discharge are considerably greater than those seen in the modern day water column and would have altered both the supply of oceanic warmth to the WAP as well as regional marine/atmospheric interactions. In constraining changes in glacial discharge over the last deglaciation, the records provide a future framework for investigating links between annually resolved records of glacial dynamics and ocean/climate variability along the WAP.
Resumo:
During monthly samplings between September 1998 and August 2000. 3,660 specimens of Ucides cordatus (Linnaeus, 1763) (2054 males and 1606 females) were obtained and examined for size (CW carapace width) to determine growth-age equations for each sex. This species showed a slower growth, with a marked seasonal oscillation, in females as compared to males, suggesting application of the seasonal and nonseasonal von Bertalanffy growth model, respectively. CW∝ and k constant were closely similar for the two sexes (CW∝ (male) = 90.3 mm: CW∝ (female) = 88.6 mm; k(male) = 0.28; k(female) = 0.26). The age at sexual maturity was estimated to be around 3 years, while the age at legal size (CW = 60 mm) was 3.8 and 4.7 years for males and females, respectively. In the laboratory, juvenile stages did not show differences in growth rates under the same temperature and photoperiod conditions.
Resumo:
Intensification of permafrost disturbances such as active layer detachments (ALDs) and retrogressive thaw slumps (RTS) have been observed across the circumpolar Arctic. These features are indicators of unstable conditions stemming from recent climate warming and permafrost degradation. In order to understand the processes interacting to give rise to these features, a multidisciplinary approach is required; i.e., interactions between geomorphology, hydrology, vegetation and ground thermal conditions. The goal of this research is to detect and map permafrost disturbance, predict landscape controls over disturbance and determine approaches for monitoring disturbance, all with the goal of contributing to the mitigation of permafrost hazards. Permafrost disturbance inventories were created by applying semi-automatic change detection techniques to IKONOS satellite imagery collected at the Cape Bounty Arctic Watershed Observatory (CBAWO). These methods provide a means to estimate the spatial distribution of permafrost disturbances for a given area for use as an input in susceptibility modelling. Permafrost disturbance susceptibility models were then developed using generalized additive and generalized linear models (GAM, GLM) fitted to disturbed and undisturbed locations and relevant GIS-derived predictor variables (slope, potential solar radiation, elevation). These models successfully delineated areas across the landscape that were susceptible to disturbances locally and regionally when transferred to an independent validation location. Permafrost disturbance susceptibility models are a first-order assessment of landscape susceptibility and are promising for designing land management strategies for remote permafrost regions. Additionally, geomorphic patterns associated with higher susceptibility provide important knowledge about processes associated with the initiation of disturbances. Permafrost degradation was analyzed at the CBAWO using differential interferometric synthetic aperture radar (DInSAR). Active-layer dynamics were interpreted using inter-seasonal and intra-seasonal displacement measurements and highlight the importance of hydroclimatic factors on active layer change. Collectively, these research approaches contribute to permafrost monitoring and the assessment of landscape-scale vulnerability in order to develop permafrost disturbance mitigation strategies.
Resumo:
Because climate can affect xylem cell anatomy, series of intra-annual cell anatomical features have the potential to retrospectively supply seasonal climatic information. In this study, we explored the ability to extract information about water stress conditions from tracheid features of the Mediterranean conifer Juniperus thurifera L. Tracheidograms of four climatic years from two drought-sensitive sites in Spain were compared to evaluate whether it is possible to link intra-annual cell size patterns to seasonal climatic conditions. Results indicated site-specific anatomical adjustment such as smaller and thicker tracheids at the dryer site but also showed a strong climatic imprint on the intra-annual pattern of tracheid size. Site differences in cell size reflected expected structural adjustments against cavitation failures. Differences between intra-annual patterns, however, indicated a response to seasonal changes in water availability whereby cells formed under drought conditions were smaller and thicker, and vice versa. This relationship was more manifest and stable at the dryer site
Resumo:
Concentrations of cations (Na(+), Ca(2+), Mg(2+), K(+), NH(4) (+)), anions (HCO(3) (-), Cl(-), NO(3) (-), SO(4) (2-), PO(4) (3-)) and suspended sediments in the Madeira River water were determined near the city of Porto Velho (RO), in order to assess variation in water chemistry from 2004 to 2007. Calcium and bicarbonate were the dominant cation and anion, respectively. Significant seasonal differences were found, with highest concentrations occurring during the dry season, as expected from the drainage of Andean carbonate-rich substratum. Interannual variations were also observed, but became significant only when annual average discharge was 25% less than normal. Under this atypical discharge condition, bicarbonate was replaced by sulfate, and higher suspended sediment concentrations and loads were also observed. Compared to previously published studies, it appears that no significant changes in water chemistry have occurred during the last 20-30 years, although differences in approaches and sampling designs among this and previous studies may not allow detection of modest changes. The calculated suspended sediment load reported here is close to the values presented elsewhere, reinforcing the relative importance of this river as a sediment supplier for the Amazon Basin. Seasonality has a significant control on the chemistry of Madeira River waters, and severe decrease in discharge due to anthropogenic changes, such as construction of reservoirs or the occurrence of drier years-a plausible consequence of global climate change-may lead to modification in the chemical composition as well in the sediment deliver to the Amazon River.
Resumo:
The value of a seasonal forecasting system based on phases of the Southern Oscillation was estimated for a representative dryland wheat grower in the vicinity of Goondiwindi. In particular the effects on this estimate of risk attitude and planting conditions were examined. A recursive stochastic programming approach was used to identify the grower's utility-maximising action set in the event of each of the climate patterns over the period 1894-1991 recurring In the imminent season. The approach was repeated with and without use of the forecasts. The choices examined were, at planting, nitrogen application rate and cultivar and, later in the season, choices of proceeding with or abandoning each wheat activity, The value of the forecasting system was estimated as the maximum amount the grower could afford to pay for its use without expected utility being lowered relative to its non use.