932 resultados para Intestinal-absorption


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study evaluates for the first time in dogs, the kinetics of green tea catechins and their metabolic forms in plasma and urine. Ten beagles were administered 173 mg (12·35 mg/kg body weight) of catechins as a green tea extract, in capsules. Blood samples were collected during 24 h after intake and urine samples were collected during the following periods of time: 02, 26, 68 and 824 h. Two catechins with a galloyl moiety and three conjugated metabolites were detected in plasma. Most of the detected forms in plasma reached their maximum plasma concentration (Cmax) at around 1 h. Median Cmax for (2)-epigallocatechin-3-gallate (EGCG), (2)-epicatechin-3-gallate (ECG), (2)-epigallocatechin glucuronide (EGCglucuronide), (2)-epicatechin glucuronide (EC-glucuronide), (2)-epicatechin sulphate (EC sulphate) were 0·3 (range 0·11·9), 0·1 (range 00·4), 0·8 (range 0·23·9), 0·2 (range 0·1 1·7) and 1 (range 0·33·4) mmol/l, respectively. The areas under the plasma concentration v. time curves (AUC0!24) were 427 (range 1021185) mmol/l £ min for EGC-glucuronide, 112 (range 53919) mmol/l £ min for EC-sulphate, 71 (range 26306) mmol/l £ min for EGCG, 40 (range 12258) mmol/l £ min for EC-glucuronide and 14 (range 0·1124) mmol/l £ min for ECG. The values of mean residence time (MRT0!24) were 5 (range 216), 2 (range 111), 10 (range 213), 3 (range 216) and 2·4 (range 118) h for EGCG, ECG, EGC-glucuronide, EC-glucuronide and EC sulphate, respectively. In urine, catechins were present as conjugated forms, suggesting bile excretion of EGCG and ECG. Green tea catechins are absorbed following an oral administration and EGC-glucuronide is the metabolic form that remains in the organism for a longer period of time, suggesting that this compound could suffer an enterohepatic cycle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study evaluated the pharmacokinetics of three different grapefruit flavanone forms in dog plasma and demonstrated their absorption after an oral intake of a grapefruit extract; pharmacokinetic parameters of these forms were also determined. Ten healthy beagles were administered 70 mg citrus flavonoids as a grapefruit extract contained in capsules, while two additional dogs were used as controls and given an excipient. The grapefruit flavanone naringin, along with its metabolites naringenin and naringenin glucuronide, was detected in dog plasma. Blood samples were collected between 0 and 24 h after administration of the extract. Naringin reached its maximun plasma concentration at around 80 min, whereas naringenin and naringenin glucuronide reached their maximun plasma concentrations at around 20 and 30 min, respectively. Maximum plasma concentrations of naringin, naringenin and naringenin glucuronide (medians and ranges) were 0·24 (0·05 2·08), 0·021 (0·001 0·3) and 0·09 (0·034 0·12) mmol/l, respectively. The areas under the curves were 23·16 l (14·04 70·62) min £ mmol/for nariningin, 1·78 (0·09 4·95) min £ mmol/l for naringenin and 22·5 (2·74 99·23) min £ mmol/l for naringenin glucuronide. The median and range values for mean residence time were 3·3 (1·5 9·3), 2·8 (0·8 11·2) and 8·0 (2·3 13·1) h for naringin, naringenin and naringenin glucuronide, respectively. The results of the present study demonstrate the absorption of grapefruit flavanones via the presence of their metabolites in plasma, thus making an important contribution to the field since the biological activities ascribed to these compounds rely on their specific forms of absorption.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study evaluates for the first time in dogs, the kinetics of green tea catechins and their metabolic forms in plasma and urine. Ten beagles were administered 173 mg (12·35 mg/kg body weight) of catechins as a green tea extract, in capsules. Blood samples were collected during 24 h after intake and urine samples were collected during the following periods of time: 0-2, 2-6, 6-8 and 8-24 h. Two catechins with a galloyl moiety and three conjugated metabolites were detected in plasma. Most of the detected forms in plasma reached their maximum plasma concentration (Cmax) at around 1 h. Median Cmax for (2)-epigallocatechin-3-gallate (EGCG), (2)-epicatechin-3-gallate (ECG), (2)-epigallocatechin glucuronide (EGCglucuronide), (2)-epicatechin glucuronide (EC-glucuronide), (2)-epicatechin sulphate (EC sulphate) were 0·3 (range 0·1-1·9), 0·1 (range 0-0·4), 0·8 (range 0·2-3·9), 0·2 (range 0·1 1·7) and 1 (range 0·3-3·4) mmol/l, respectively. The areas under the plasma concentration v. time curves (AUC0!24) were 427 (range 102-1185) mmol/l £ min for EGC-glucuronide, 112 (range 53-919) mmol/l £ min for EC-sulphate, 71 (range 26-306) mmol/l £ min for EGCG, 40 (range 12-258) mmol/l £ min for EC-glucuronide and 14 (range 0·1-124) mmol/l £ min for ECG. The values of mean residence time (MRT0!24) were 5 (range 2-16), 2 (range 1-11), 10 (range 2-13), 3 (range 2-16) and 2·4 (range 1-18) h for EGCG, ECG, EGC-glucuronide, EC-glucuronide and EC sulphate, respectively. In urine, catechins were present as conjugated forms, suggesting bile excretion of EGCG and ECG. Green tea catechins are absorbed following an oral administration and EGC-glucuronide is the metabolic form that remains in the organism for a longer period of time, suggesting that this compound could suffer an enterohepatic cycle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study evaluates for the first time in dogs, the kinetics of green tea catechins and their metabolic forms in plasma and urine. Ten beagles were administered 173 mg (12·35 mg/kg body weight) of catechins as a green tea extract, in capsules. Blood samples were collected during 24 h after intake and urine samples were collected during the following periods of time: 0-2, 2-6, 6-8 and 8-24 h. Two catechins with a galloyl moiety and three conjugated metabolites were detected in plasma. Most of the detected forms in plasma reached their maximum plasma concentration (Cmax) at around 1 h. Median Cmax for (2)-epigallocatechin-3-gallate (EGCG), (2)-epicatechin-3-gallate (ECG), (2)-epigallocatechin glucuronide (EGCglucuronide), (2)-epicatechin glucuronide (EC-glucuronide), (2)-epicatechin sulphate (EC sulphate) were 0·3 (range 0·1-1·9), 0·1 (range 0-0·4), 0·8 (range 0·2-3·9), 0·2 (range 0·1 1·7) and 1 (range 0·3-3·4) mmol/l, respectively. The areas under the plasma concentration v. time curves (AUC0!24) were 427 (range 102-1185) mmol/l £ min for EGC-glucuronide, 112 (range 53-919) mmol/l £ min for EC-sulphate, 71 (range 26-306) mmol/l £ min for EGCG, 40 (range 12-258) mmol/l £ min for EC-glucuronide and 14 (range 0·1-124) mmol/l £ min for ECG. The values of mean residence time (MRT0!24) were 5 (range 2-16), 2 (range 1-11), 10 (range 2-13), 3 (range 2-16) and 2·4 (range 1-18) h for EGCG, ECG, EGC-glucuronide, EC-glucuronide and EC sulphate, respectively. In urine, catechins were present as conjugated forms, suggesting bile excretion of EGCG and ECG. Green tea catechins are absorbed following an oral administration and EGC-glucuronide is the metabolic form that remains in the organism for a longer period of time, suggesting that this compound could suffer an enterohepatic cycle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Shiga toxin (Stx)-producing Escherichia coli (STEC) colonizes the large intestine causing a spectrum of disorders, including watery diarrhea, bloody diarrhea (hemorrhagic colitis), and hemolytic-uremic syndrome. It is estimated that hemolytic-uremic syndrome is the most common cause of acute renal failure in infants in Argentina. Stx is a multimeric toxin composed of one A subunit and five B subunits. In this study we demonstrate that the Stx2 B subunit inhibits the water absorption (Jw) across the human and rat colonic mucosa without altering the electrical parameters measured as transepithelial potential difference and short circuit current. The time-course Jw inhibition by 400 ng/ml purified Stx2 B subunit was similar to that obtained using 12 ng/ml Stx2 holotoxin suggesting that both, A and B subunits of Stx2 contributed to inhibit the Jw. Moreover, non-hemorrhagic fluid accumulation was observed in rat colon loops after 16 h of treatment with 3 and 30 ng/ml Stx2 B subunit. These changes indicate that Stx2 B subunit induces fluid accumulation independently of A subunit activity by altering the usual balance of intestinal absorption and secretion toward net secretion. In conclusion, our results suggest that the Stx2 B subunit, which is non-toxic for Vero cells, may contribute to the watery diarrhea observed in STEC infection. Further studies will be necessary to determine whether the toxicity of Stx2 B subunit may have pathogenic consequences when it is used as a component in an acellular STEC vaccine or as a vector in cancer vaccines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Praziquantel has been shown to be highly effective against all known species of Schistosoma infecting humans. Spherical nanoparticles made of poly(D,L-lactide-co-glycolide) acid with controlled size were designed as drug carriers. Praziquantel, a hydrophobic drug, was entrapped into the polymeric nanoparticles with 30% (w/w) of theoretical loading. The nanoparticles size was approximately of 350 nm with 66% of encapsulation efficiency. The everted gut sac model shows to be efficient to evaluate the drug permeation through the intestinal membrane. The results show that free praziquantel presents 4-fold times more permeation than praziquantel-loaded PLGA nanoparticles and physical mixture. For this drug, in special, this result can be interesting, since the nanoparticulate system can behave as a drug reservoir and/or to have a more localized effect in intestinal membrane for a prolonged period of time, since great amounts of parasites can be usually found in the mesenteric veins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nile tilapia Oreochromis niloticus fingerlings were fed with purified or practical diets, supplemented with 150 Ing Zn/kg, from different sources. Dry matter (DM), crude protein (CP), ether extract (EE), and gross energy (GE) apparent digestibility coefficients (ADC), as well as zinc, copper, calcium, and phosphorus apparent absorption coefficients (AAC) were determined by the addition of 0.1% chromic oxide to the diets. The supplemental zinc sources utilized were commercial grade zinc sulfate monohydrate (ZnSO 4), zinc oxide (ZnO) and a zinc amino acid complex (Zn-AA). Analytical grade zinc sulfate heptahydrate was also utilized as a standard reference zinc source. There was a significant difference between purified (74.9%) and practical (41.3%) zinc AAC for the ZnO supplemented diets (P < 0.05). The supplemental zinc sources presented similar AAC when purified diets were utilized. However, ZnSO 4 was the best supplemental zinc source when practical type diets were used. There were no significant differences between supplemental zinc AAC from ZnS0 4 (68.9%), and supplemental zinc AAC from Zn-AA (61.3%) in practical diets, but Zn-AA diet showed a statistically lower zinc AAC when compared with the standard zinc source diet (75.6%). The practical diet supplemented with ZnO had the worst supplemental zinc AAC (41.3%). Dietary copper (74.21%), calcium (70.9%), and phosphorus (71.9%) AAC of the practical diets supplemented with ZnO were statistically lower (P < 0.05) than the respective AAC of the practical ZnSO 4 supplemented diets (83.6%, 84.1%, 87.1%).The ADC of the practical ZnO supplemented diet for DM (76.3%), CP (88.6%), EE (82.4%), and GE (81.6%) were statiscally lower than the respective ADC of the ZnSO 4 practical diet (86.0, 92.7, 93.6, 89.6%, respectively) and those ADC of the Zn-AA practical diet (84.7, 92.7, 93.7, 88.2%, respectively) (P < 0.05). Hence, these results indicate that ZnSO 4 and Zn-AA have equivalent intestinal absorption as supplemental zinc sources for Nile tilapia juveniles and both are superior to ZnO. © Copyright by the World Aquaculture Society 2005.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Roux-en-Y gastric bypass (RYGB) modifies the anatomical structure of the upper intestine tract, reduces gastric acid secretion, and may impair LT4 absorption. The aim of this study was to evaluate the LT4 absorption in morbidly obese patients before and after RYGB. Thirty morbidly obese patients were divided in two groups: The NS group included 15 patients before RYGB surgery (BMI = 43.1 +/- 4 kg/m(2)), and the S group included 15 patients after surgery (BMI = 37.3 +/- 4 kg/m(2)). Two baseline samples were collected, and 600 mu g of oral LT4 tablets were administered. Blood samples were collected at 30, 60, 120, 180, 240, 300, and 1440 min. Serum-free T4 (FT4), total T4 (TT4), and TSH were measured at each time point. The increase in TT4, FT4, and TSH (Delta TT4, Delta FT4, and Delta TSH) was calculated, subtracting from the baseline mean value. The pharmacokinetics parameters regarding LT4 absorption, maximum Delta TT4, and area under the curve(AUC) of both Delta TT4 and Delta FT4 were significantly higher in the S group compared with the NS group (p < 0.05). It was observed, however, that there was a significant delay in the absorption of LT4 in the S group. Basal serum TSH and leptin levels were higher in the NS group (p = 0.016 and 0.026, respectively), whereas basal serum TT4, FT4, Delta TSH, and the AUC of Delta TSH were similar between groups. In this study, we have demonstrated that Roux-en-Y bypass surgery does not diminish LT4 absorption. A small but significant delayed absorption of LT4, however, was observed in patients after surgery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis, interactions of folic acid with tea and tea components at the level of intestinal absorption have been investigated. Firstly, the interaction between folic acid and tea as well as tea catechins was studied in vitro, using Caco-2 cell monolayers and secondly, a clinical trial was designed and carried out. In addition, targeting of folic acid conjugated nanoparticles to FR expressing Caco-2 cells was studied in order to evaluate the principle of nutrient-receptor-coupled transport for drug targeting. In the first part of this work, it was shown that EGCG and ECG (gallated catechins) inhibit folic acid uptake (IC50 of 34.8 and 30.8 µmol/L) comparable to MTX (methotrexate) under these experimental conditions. Moreover, commercial green and black tea extracts inhibited folic acid uptake with IC50 values of approximately 7.5 and 3.6 mg/mL, respectively. These results clearly indicate an interaction between folic acid and green tea catechins at the level of intestinal uptake. The mechanism responsible for the inhibition process might be the inhibition of the influx transport routes for folates such as via RFC and/or PCFT. For understanding the in vivo relevance of this in vitro interaction, a phase one, open-labeled, randomized, cross-over clinical study in seven healthy volunteers was designed. For the 0.4 mg folic acid dose, the mean Cmax decreased by 39.2% and 38.6% and the mean AUC0 decreased by 26.6% and 17.9% by green tea and black tea, respectively. For the 5 mg folic acid dose, the mean Cmax decreased by 27.4% and mean AUC0 decreased by 39.9% when taken with green tea. The results of the clinical study confirm the interaction between tea and folic acid in vivo leading to lower bioavailabilities of folic acid. In the second part of the thesis, targeting studies using folic acid conjugated nanoparticles were conducted. Folic acid conjugated nanoparticles were shown to be internalized by the cell via FR (folate receptor) mediated endocytosis. DNA block copolymer micelles equipped with 2, 11 and 28 folic acid units respectively were applied on FR expressing Caco-2 cells. There was a direct proportion in the amount of internalized nanoparticle and the number of folic acid units on the periphery of the nanoparticle. To sum up, throughout this thesis, the importance of folic acid for nutrition and nutrient and drug related interactions of folic acid at intestinal level was shown. Furthermore, significance of FRs in targeting for cancer chemotherapy was demonstrated in in vitro cell culture experiments. Folic acid conjugated DNA block copolymer micelles were suggested as efficient nanoparticles for targeted drug delivery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ca2+ is essential for numerous physiological functions in our bodies. Therefore, its homeostasis is finely maintained through the coordination of intestinal absorption, renal reabsorption, and bone resorption. The Ca2+-selective epithelial channels TRPV5 and TRPV6 have been identified, and their physiological roles have been revealed: TRPV5 is important in final renal Ca2+ reabsorption, and TRPV6 has a key role in intestinal Ca2+ absorption. The TRPV5 knockout mice exhibit renal leak hypercalciuria and accordingly upregulate their intestinal TRPV6 expression to compensate for their negative Ca2+ balance. In contrast, despite their severe negative Ca2+ balance, TRPV6-null mice do not display any compensatory mechanism, thus resulting in secondary hyperparathyroidism. These results indicate that the genes for TRPV5 and TRPV6 are differentially regulated in human diseases associated with disturbed Ca2+ balance such as hypercalciuria, osteoporosis, and vitamin D-resistant rickets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrophilic drugs are often poorly absorbed when administered orally. There has been considerable interest in the possibility of using absorption enhancers to promote absorption of polar molecules across membrane surfaces. The bile acids are one of the most widely investigated classes of absorption enhancers, but there is disagreement about what features of bile acid enhancers are responsible for their efficacy. We have designed a class of glycosylated bile acid derivatives to evaluate how increasing the hydrophilicity of the steroid nucleus affects the ability to transport polar molecules across membranes. Some of the glycosylated molecules are significantly more effective than taurocholate in promoting the intestinal absorption of a range of drugs, showing that hydrophobicity is not a critical parameter in transport efficacy, as previously suggested. Furthermore, the most effective glycosylated compound is also far less damaging to membranes than the best bile acid absorption promoters, presumably because it is more hydrophilic. The results reported here show that it is possible to decouple absorption-promoting activity from membrane damage, a finding that should spark interest in the design of new compounds to facilitate the delivery of polar drugs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As principais propriedades farmacológicas da Casearia sylvestris, uma espécie de árvore cujas folhas são utilizadas na medicina popular, já foram descritas na literatura. Recentemente foi demonstrada a potente atividade citotóxica in vitro da casearina X (CAS X), o diterpeno clerodânico majoritário isolado das folhas de C. sylvestris, contra linhagens de células tumorais humanas. Apesar dos resultados promissores, sua potente atividade citotóxica in vitro não pode ser extrapolada para uma potente atividade in vivo, a menos que possua boa biodisponibilidade e duração desejável do seu efeito. Tendo em vista que o avanço nas pesquisas de produtos naturais requer a avaliação pré-clínica de propriedades farmacocinéticas, no presente trabalho foi realizada a caracterização in vitro do metabolismo e da absorção intestinal da CAS X, com o objetivo de prever sua biodisponibilidade in vivo. Para os estudos de metabolismo in vitro, foi utilizado o modelo microssomal hepático de ratos e de humanos. Foi desenvolvido um método analítico para a quantificação da CAS X em microssomas, empregando a precipitação de proteínas com acetonitrila no preparo das amostras e a cromatografia líquida de alta eficiência para as análises. O método foi validado de acordo com os guias oficiais da Agência Nacional de Vigilância Sanitária e da European Medicine Agency (EMA). A CAS X demonstrou ser substrato para as reações de hidrólise mediada pelas carboxilesterases (CES) e apresentou um perfil cinético de Michaelis-Menten. Foram estimados os parâmetros de Vmax e KM, demonstrando que o clearance intrínseco em microssomas hepático de humanos foi 1,7 vezes maior que o de ratos. O clearance hepático foi estimado por extrapolação in vitro-in vivo, resultando em mais de 90% do fluxo sanguíneo hepático em ambas as espécies. Um estudo qualitativo para a pesquisa de metabólitos foi feito utilizando espectrometria de massas, pelo qual foi possível sugerir a formação da casearina X dialdeído como produto de metabolismo. Nos estudos de absorção intestinal in vitro foi utilizado o modelo de monocamadas de células Caco-2. Um método analítico por cromatografia líquida acoplada a espectrometria de massas foi desenvolvido e validado de acordo com o EMA, para as etapas de quantificação da CAS X no sistema de células. Os parâmetros cinéticos de permeabilidade aparente absortiva e secretória da CAS X foram estimados em um sistema celular, no qual a atividade hidrolítica da CES foi inibida. Assim, a CAS X foi capaz de permear a monocamada de células Caco-2, provavelmente por transporte ativo, sem a ocorrência de efluxo, mas com significativa retenção do composto dentro das células. Em conjunto, os ensaios in vitro realizados demonstraram a susceptibilidade da CAS X ao metabolismo de primeira passagem, como substrato para as CES específicas expressas no fígado e intestino.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of solutions that prevent dehydration or promote adequate re-hydration play a vital role in preventing fatigue during exercise, however, the methods commonly used to assess the hydration ability of such solutions are invasive and often assess the components of absorption separately. This paper describes using a non-invasive deuterium tracer technique that assesses gastric emptying and intestinal absorption simultaneously to evaluate the uptake of water during rest and exercise. The kinetics of absorption are further examined by mathematical modelling of the data generated. For the rest group, 0.05 g/kg of body weight of deuterium, contained in gelatine capsules, was ingested with ordinary tap water and saliva samples were collected every 5 min for one hour while the subject remained seated. The deuterium was administered as above for the exercise group but sample collection was during one hour of exercise on a treadmill at 55% of the subject's maximum heart rate. The enrichment data for each subject were mathematically modelled and the parameters obtained were compared across groups using an independent samples t-test. Compared with the rest condition, the exercise group showed delayed absorption of water as indicated by significant differences for the modelling parameters t(2), t(1/2), maximum absorption rate and solution absorption amount at t(1). Labelling with a deuterium tracer is a good measure of the relative rate ingested fluids are absorbed by the body. Mathematical modelling of the data generates rates of maximum absorption and allows calculation of the percentage of the solution that is absorbed at any given time during the testing period. Copyright (C) 2004 John Wiley Sons, Ltd.