996 resultados para Interpolation method
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
Although accuracy of digital elevation models (DEMs) can be quantified and measured in different ways, each is influenced by three main factors: terrain character, sampling strategy and interpolation method. These parameters, and their interaction, are discussed. The generation of DEMs from digitised contours is emphasised because this is the major source of DEMs, particularly within member countries of OEEPE. Such DEMs often exhibit unwelcome artifacts, depending on the interpolation method employed. The origin and magnitude of these effects and how they can be reduced to improve the accuracy of the DEMs are also discussed.
Progress on “Changing coastlines: data assimilation for morphodynamic prediction and predictability”
Resumo:
The task of assessing the likelihood and extent of coastal flooding is hampered by the lack of detailed information on near-shore bathymetry. This is required as an input for coastal inundation models, and in some cases the variability in the bathymetry can impact the prediction of those areas likely to be affected by flooding in a storm. The constant monitoring and data collection that would be required to characterise the near-shore bathymetry over large coastal areas is impractical, leaving the option of running morphodynamic models to predict the likely bathymetry at any given time. However, if the models are inaccurate the errors may be significant if incorrect bathymetry is used to predict possible flood risks. This project is assessing the use of data assimilation techniques to improve the predictions from a simple model, by rigorously incorporating observations of the bathymetry into the model, to bring the model closer to the actual situation. Currently we are concentrating on Morecambe Bay as a primary study site, as it has a highly dynamic inter-tidal zone, with changes in the course of channels in this zone impacting the likely locations of flooding from storms. We are working with SAR images, LiDAR, and swath bathymetry to give us the observations over a 2.5 year period running from May 2003 – November 2005. We have a LiDAR image of the entire inter-tidal zone for November 2005 to use as validation data. We have implemented a 3D-Var data assimilation scheme, to investigate the improvements in performance of the data assimilation compared to the previous scheme which was based on the optimal interpolation method. We are currently evaluating these different data assimilation techniques, using 22 SAR data observations. We will also include the LiDAR data and swath bathymetry to improve the observational coverage, and investigate the impact of different types of observation on the predictive ability of the model. We are also assessing the ability of the data assimilation scheme to recover the correct bathymetry after storm events, which can dramatically change the bathymetry in a short period of time.
Resumo:
1. The rapid expansion of systematic monitoring schemes necessitates robust methods to reliably assess species' status and trends. Insect monitoring poses a challenge where there are strong seasonal patterns, requiring repeated counts to reliably assess abundance. Butterfly monitoring schemes (BMSs) operate in an increasing number of countries with broadly the same methodology, yet they differ in their observation frequency and in the methods used to compute annual abundance indices. 2. Using simulated and observed data, we performed an extensive comparison of two approaches used to derive abundance indices from count data collected via BMS, under a range of sampling frequencies. Linear interpolation is most commonly used to estimate abundance indices from seasonal count series. A second method, hereafter the regional generalized additive model (GAM), fits a GAM to repeated counts within sites across a climatic region. For the two methods, we estimated bias in abundance indices and the statistical power for detecting trends, given different proportions of missing counts. We also compared the accuracy of trend estimates using systematically degraded observed counts of the Gatekeeper Pyronia tithonus (Linnaeus 1767). 3. The regional GAM method generally outperforms the linear interpolation method. When the proportion of missing counts increased beyond 50%, indices derived via the linear interpolation method showed substantially higher estimation error as well as clear biases, in comparison to the regional GAM method. The regional GAM method also showed higher power to detect trends when the proportion of missing counts was substantial. 4. Synthesis and applications. Monitoring offers invaluable data to support conservation policy and management, but requires robust analysis approaches and guidance for new and expanding schemes. Based on our findings, we recommend the regional generalized additive model approach when conducting integrative analyses across schemes, or when analysing scheme data with reduced sampling efforts. This method enables existing schemes to be expanded or new schemes to be developed with reduced within-year sampling frequency, as well as affording options to adapt protocols to more efficiently assess species status and trends across large geographical scales.
Resumo:
This paper has several original contributions. The first is to employ a superior interpolation method that enables to estimate, nowcast and forecast monthly Brazilian GDP for 1980-2012 in an integrated way; see Bernanke, Gertler and Watson (1997, Brookings Papers on Economic Activity). Second, along the spirit of Mariano and Murasawa (2003, Journal of Applied Econometrics), we propose and test a myriad of interpolation models and interpolation auxiliary series- all coincident with GDP from a business-cycle dating point of view. Based on these results, we finally choose the most appropriate monthly indicator for Brazilian GDP. Third, this monthly GDP estimate is compared to an economic activity indicator widely used by practitioners in Brazil - the Brazilian Economic Activity Index - (IBC-Br). We found that the our monthly GDP tracks economic activity better than IBC-Br. This happens by construction, since our state-space approach imposes the restriction (discipline) that our monthly estimate must add up to the quarterly observed series in any given quarter, which may not hold regarding IBC-Br. Moreover, our method has the advantage to be easily implemented: it only requires conditioning on two observed series for estimation, while estimating IBC-Br requires the availability of hundreds of monthly series. Third, in a nowcasting and forecasting exercise, we illustrate the advantages of our integrated approach. Finally, we compare the chronology of recessions of our monthly estimate with those done elsewhere.
Resumo:
This paper has several original contributions. The rst is to employ a superior interpolation method that enables to estimate, nowcast and forecast monthly Brazilian GDP for 1980-2012 in an integrated way; see Bernanke, Gertler and Watson (1997, Brookings Papers on Economic Activity). Second, along the spirit of Mariano and Murasawa (2003, Journal of Applied Econometrics), we propose and test a myriad of interpolation models and interpolation auxiliary series all coincident with GDP from a business-cycle dating point of view. Based on these results, we nally choose the most appropriate monthly indicator for Brazilian GDP. Third, this monthly GDP estimate is compared to an economic activity indicator widely used by practitioners in Brazil - the Brazilian Economic Activity Index - (IBC-Br). We found that the our monthly GDP tracks economic activity better than IBC-Br. This happens by construction, since our state-space approach imposes the restriction (discipline) that our monthly estimate must add up to the quarterly observed series in any given quarter, which may not hold regarding IBC-Br. Moreover, our method has the advantage to be easily implemented: it only requires conditioning on two observed series for estimation, while estimating IBC-Br requires the availability of hundreds of monthly series. Third, in a nowcasting and forecasting exercise, we illustrate the advantages of our integrated approach. Finally, we compare the chronology of recessions of our monthly estimate with those done elsewhere.
Resumo:
This paper has several original contributions. The rst is to employ a superior interpolation method that enables to estimate, nowcast and forecast monthly Brazilian GDP for 1980-2012 in an integrated way; see Bernanke, Gertler and Watson (1997, Brookings Papers on Economic Activity). Second, along the spirit of Mariano and Murasawa (2003, Journal of Applied Econometrics), we propose and test a myriad of interpolation models and interpolation auxiliary series all coincident with GDP from a business-cycle dating point of view. Based on these results, we nally choose the most appropriate monthly indicator for Brazilian GDP. Third, this monthly GDP estimate is compared to an economic activity indicator widely used by practitioners in Brazil- the Brazilian Economic Activity Index - (IBC-Br). We found that the our monthly GDP tracks economic activity better than IBC-Br. This happens by construction, since our state-space approach imposes the restriction (discipline) that our monthly estimate must add up to the quarterly observed series in any given quarter, whichmay not hold regarding IBC-Br. Moreover, our method has the advantage to be easily implemented: it only requires conditioning on two observed series for estimation, while estimating IBC-Br requires the availability of hundreds of monthly series. Third, in a nowcasting and forecasting exercise, we illustrate the advantages of our integrated approach. Finally, we compare the chronology of recessions of our monthly estimate with those done elsewhere.
Resumo:
The first contribution of this paper is to employ a superior interpolation method that enables to estimate, nowcast and forecast monthly Brazilian GDP for 1980-2012 in an integrated way; see Bernanke, Gertler and Watson (1997, Brookings Papers on Economic Activity). The second contribution, along the spirit of Mariano and Murasawa (2003, Journal of Applied Econometrics), is to propose and test a myriad of inter-polation models and interpolation auxiliary series all coincident with GDP from a business-cycle dating point of view. Based on these results, we finally choose the most appropriate monthly indicator for Brazilian GDP. Third, this monthly GDP estimate is compared to an economic activity indicator widely used by practitioners in Brazil - the Brazilian Economic Activity Index - (IBC-Br). We found that our monthly GDP tracks economic activity better than IBC-Br. This happens by construction, since our state-space approach imposes the restriction (discipline) that our monthly estimate must add up to the quarterly observed series in any given quarter, which may not hold regarding IBC-Br. Moreover, our method has the advantage to be easily implemented: it only requires conditioning on two observed series for estimation, while estimating IBC-Br requires the availability of hundreds of monthly series. The third contribution is to illustrate, in a nowcasting and forecasting exercise, the advantages of our integrated approach. Finally, we compare the chronology of recessions of our monthly estimate with those done elsewhere.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Improper use of pesticides can lead to significant environmental impacts such as, contamination of environmental compartments, being the aquatic compartments the most vulnerable. In this context, the spatialization of pesticides concentrations estimative in groundwater provides important insights for decision making in managing and monitoring pesticides use. This study aimed to spatialize estimatives of groundwater contamination by Tebuthiuron, from different irrigation depths in the Rio Pardo basin, Pardinho-SP, Brazil. The simulations were performed using the ARAquá computer system, considering 0mm, 200 mm and 400 mm annual irrigation depths. Geostatistical techniques were used to obtain the spatial distribution of the simulated estimative. Tebuthiuron maps estimating concentration in groundwater were obtained by Kriging interpolation method, and indicated the areas with high potential for groundwater contamination. Considering all the simulations, it was concluded that there was no risk of groundwater contamination by Tebuthiuron in the study area.
Resumo:
Traditional methods of submerged aquatic vegetation (SAV) survey last long and then, they are high cost. Optical remote sensing is an alternative, but it has some limitations in the aquatic environment. The use of echosounder techniques is efficient to detect submerged targets. Therefore, the aim of this study is to evaluate different kinds of interpolation approach applied on SAV sample data collected by echosounder. This study case was performed in a region of Uberaba River - Brazil. The interpolation methods evaluated in this work follow: Nearest Neighbor, Weighted Average, Triangular Irregular Network (TIN) and ordinary kriging. Better results were carried out with kriging interpolation. Thus, it is recommend the use of geostatistics for spatial inference of SAV from sample data surveyed with echosounder techniques. © 2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Este estudo avaliou a sustentabilidade das experiências inovadoras baseadas em indicadores e critérios fundamentados em teorias científicas pela percepção de agricultores/as dos municípios de Irituia, São Domingos do Capim, Concórdia do Pará e Mãe do Rio na área de abrangência do Pólo Rio Capim do programa PROAMBIENTE. Objetivou-se compreender o cotidiano desses atores sociais no uso do território por meio de práticas de mínimo impacto ambiental e os motivos que os levaram a estender os tradicionais sitos ou quintais para outras parcelas das Unidades de Produção Familiares (UPFs), transformando-as em Sistemas Agroflorestais (SAFs). A metodologia adotada compreendeu na construção de um formulário, a coleta de dados empíricos e convívio direto em 78 UPFs o que permitiu a identificação de constructo de variabilidade pela Análise Fatorial, estabelecendo quatro fatores: produção e comercialização; prática de produção; intervenção e questão de gênero. O primeiro fator foi utilizado como critério para a seleção e retorno em 18 UPFs definidas para aplicar o questionário e o formulário de notas avaliativas referentes aos indicadores econômicos, social, cultural e ecológico-ambiental. A avaliação da sustentabilidade foi feita por meio da consolidação destes indicadores utilizando o método agroecológico da “Ameba” e o mapeamento da mesma pelo método de interpolação do “vizinho mais próximo” na área de estudo. Como resultados aos indicadores cultural e ecológico/ambiental, apresentaram-se em melhores condições em termos de sustentabilidade com a conceituação de bom para excelente, enquanto que Inversamente foi a situação demonstrada pelos indicadores social e econômico, dos quais os resultados avaliados estão no limiar do que se pode deduzir como sustentável com desempenho de fraco para suficiente.
Resumo:
Neste trabalho, foi desenvolvido e implementado um método de discretização espacial baseado na lei de Coulomb para geração de pontos que possam ser usados em métodos meshless para solução das equações de Maxwell. Tal método aplica a lei de Coulomb para gerar o equilíbrio espacial necessário para gerar alta qualidade de discretização espacial para um domínio de análise. Este método é denominado aqui de CLDM (Coulomb Law Discretization Method ) e é aplicado a problemas bidimensionais. Utiliza-se o método RPIM (Radial Point Interpolation Method) com truncagem por UPML (Uniaxial Perfectlly Matched Layers) para solução das equações de Maxwell no domínio do tempo (modo TMz).
Resumo:
Neste trabalho, são propostas metodologias para otimização do parâmetro de forma local c do método RPIM (Radial Point Interpolation Method). Com as técnicas apresentadas, é possível reduzir problemas com inversão de matrizes comuns em métodos sem malha e, também, garantir um maior grau de liberdade e precisão para a utilização da técnica, já que se torna possível uma definição semi-automática dos fatores de forma mais adequados para cada domínio de suporte. Além disso, é apresentado um algoritmo baseado no Line Sweep para a geração eficiente dos domínios de suporte.