775 resultados para Internet-of-Things, Wireless Sensor Network, CoAP
Resumo:
El auge del "Internet de las Cosas" (IoT, "Internet of Things") y sus tecnologías asociadas han permitido su aplicación en diversos dominios de la aplicación, entre los que se encuentran la monitorización de ecosistemas forestales, la gestión de catástrofes y emergencias, la domótica, la automatización industrial, los servicios para ciudades inteligentes, la eficiencia energética de edificios, la detección de intrusos, la gestión de desastres y emergencias o la monitorización de señales corporales, entre muchas otras. La desventaja de una red IoT es que una vez desplegada, ésta queda desatendida, es decir queda sujeta, entre otras cosas, a condiciones climáticas cambiantes y expuestas a catástrofes naturales, fallos de software o hardware, o ataques maliciosos de terceros, por lo que se puede considerar que dichas redes son propensas a fallos. El principal requisito de los nodos constituyentes de una red IoT es que estos deben ser capaces de seguir funcionando a pesar de sufrir errores en el propio sistema. La capacidad de la red para recuperarse ante fallos internos y externos inesperados es lo que se conoce actualmente como "Resiliencia" de la red. Por tanto, a la hora de diseñar y desplegar aplicaciones o servicios para IoT, se espera que la red sea tolerante a fallos, que sea auto-configurable, auto-adaptable, auto-optimizable con respecto a nuevas condiciones que puedan aparecer durante su ejecución. Esto lleva al análisis de un problema fundamental en el estudio de las redes IoT, el problema de la "Conectividad". Se dice que una red está conectada si todo par de nodos en la red son capaces de encontrar al menos un camino de comunicación entre ambos. Sin embargo, la red puede desconectarse debido a varias razones, como que se agote la batería, que un nodo sea destruido, etc. Por tanto, se hace necesario gestionar la resiliencia de la red con el objeto de mantener la conectividad entre sus nodos, de tal manera que cada nodo IoT sea capaz de proveer servicios continuos, a otros nodos, a otras redes o, a otros servicios y aplicaciones. En este contexto, el objetivo principal de esta tesis doctoral se centra en el estudio del problema de conectividad IoT, más concretamente en el desarrollo de modelos para el análisis y gestión de la Resiliencia, llevado a la práctica a través de las redes WSN, con el fin de mejorar la capacidad la tolerancia a fallos de los nodos que componen la red. Este reto se aborda teniendo en cuenta dos enfoques distintos, por una parte, a diferencia de otro tipo de redes de dispositivos convencionales, los nodos en una red IoT son propensos a perder la conexión, debido a que se despliegan en entornos aislados, o en entornos con condiciones extremas; por otra parte, los nodos suelen ser recursos con bajas capacidades en términos de procesamiento, almacenamiento y batería, entre otros, por lo que requiere que el diseño de la gestión de su resiliencia sea ligero, distribuido y energéticamente eficiente. En este sentido, esta tesis desarrolla técnicas auto-adaptativas que permiten a una red IoT, desde la perspectiva del control de su topología, ser resiliente ante fallos en sus nodos. Para ello, se utilizan técnicas basadas en lógica difusa y técnicas de control proporcional, integral y derivativa (PID - "proportional-integral-derivative"), con el objeto de mejorar la conectividad de la red, teniendo en cuenta que el consumo de energía debe preservarse tanto como sea posible. De igual manera, se ha tenido en cuenta que el algoritmo de control debe ser distribuido debido a que, en general, los enfoques centralizados no suelen ser factibles a despliegues a gran escala. El presente trabajo de tesis implica varios retos que conciernen a la conectividad de red, entre los que se incluyen: la creación y el análisis de modelos matemáticos que describan la red, una propuesta de sistema de control auto-adaptativo en respuesta a fallos en los nodos, la optimización de los parámetros del sistema de control, la validación mediante una implementación siguiendo un enfoque de ingeniería del software y finalmente la evaluación en una aplicación real. Atendiendo a los retos anteriormente mencionados, el presente trabajo justifica, mediante una análisis matemático, la relación existente entre el "grado de un nodo" (definido como el número de nodos en la vecindad del nodo en cuestión) y la conectividad de la red, y prueba la eficacia de varios tipos de controladores que permiten ajustar la potencia de trasmisión de los nodos de red en respuesta a eventuales fallos, teniendo en cuenta el consumo de energía como parte de los objetivos de control. Así mismo, este trabajo realiza una evaluación y comparación con otros algoritmos representativos; en donde se demuestra que el enfoque desarrollado es más tolerante a fallos aleatorios en los nodos de la red, así como en su eficiencia energética. Adicionalmente, el uso de algoritmos bioinspirados ha permitido la optimización de los parámetros de control de redes dinámicas de gran tamaño. Con respecto a la implementación en un sistema real, se han integrado las propuestas de esta tesis en un modelo de programación OSGi ("Open Services Gateway Initiative") con el objeto de crear un middleware auto-adaptativo que mejore la gestión de la resiliencia, especialmente la reconfiguración en tiempo de ejecución de componentes software cuando se ha producido un fallo. Como conclusión, los resultados de esta tesis doctoral contribuyen a la investigación teórica y, a la aplicación práctica del control resiliente de la topología en redes distribuidas de gran tamaño. Los diseños y algoritmos presentados pueden ser vistos como una prueba novedosa de algunas técnicas para la próxima era de IoT. A continuación, se enuncian de forma resumida las principales contribuciones de esta tesis: (1) Se han analizado matemáticamente propiedades relacionadas con la conectividad de la red. Se estudia, por ejemplo, cómo varía la probabilidad de conexión de la red al modificar el alcance de comunicación de los nodos, así como cuál es el mínimo número de nodos que hay que añadir al sistema desconectado para su re-conexión. (2) Se han propuesto sistemas de control basados en lógica difusa para alcanzar el grado de los nodos deseado, manteniendo la conectividad completa de la red. Se han evaluado diferentes tipos de controladores basados en lógica difusa mediante simulaciones, y los resultados se han comparado con otros algoritmos representativos. (3) Se ha investigado más a fondo, dando un enfoque más simple y aplicable, el sistema de control de doble bucle, y sus parámetros de control se han optimizado empleando algoritmos heurísticos como el método de la entropía cruzada (CE, "Cross Entropy"), la optimización por enjambre de partículas (PSO, "Particle Swarm Optimization"), y la evolución diferencial (DE, "Differential Evolution"). (4) Se han evaluado mediante simulación, la mayoría de los diseños aquí presentados; además, parte de los trabajos se han implementado y validado en una aplicación real combinando técnicas de software auto-adaptativo, como por ejemplo las de una arquitectura orientada a servicios (SOA, "Service-Oriented Architecture"). ABSTRACT The advent of the Internet of Things (IoT) enables a tremendous number of applications, such as forest monitoring, disaster management, home automation, factory automation, smart city, etc. However, various kinds of unexpected disturbances may cause node failure in the IoT, for example battery depletion, software/hardware malfunction issues and malicious attacks. So, it can be considered that the IoT is prone to failure. The ability of the network to recover from unexpected internal and external failures is known as "resilience" of the network. Resilience usually serves as an important non-functional requirement when designing IoT, which can further be broken down into "self-*" properties, such as self-adaptive, self-healing, self-configuring, self-optimization, etc. One of the consequences that node failure brings to the IoT is that some nodes may be disconnected from others, such that they are not capable of providing continuous services for other nodes, networks, and applications. In this sense, the main objective of this dissertation focuses on the IoT connectivity problem. A network is regarded as connected if any pair of different nodes can communicate with each other either directly or via a limited number of intermediate nodes. More specifically, this thesis focuses on the development of models for analysis and management of resilience, implemented through the Wireless Sensor Networks (WSNs), which is a challenging task. On the one hand, unlike other conventional network devices, nodes in the IoT are more likely to be disconnected from each other due to their deployment in a hostile or isolated environment. On the other hand, nodes are resource-constrained in terms of limited processing capability, storage and battery capacity, which requires that the design of the resilience management for IoT has to be lightweight, distributed and energy-efficient. In this context, the thesis presents self-adaptive techniques for IoT, with the aim of making the IoT resilient against node failures from the network topology control point of view. The fuzzy-logic and proportional-integral-derivative (PID) control techniques are leveraged to improve the network connectivity of the IoT in response to node failures, meanwhile taking into consideration that energy consumption must be preserved as much as possible. The control algorithm itself is designed to be distributed, because the centralized approaches are usually not feasible in large scale IoT deployments. The thesis involves various aspects concerning network connectivity, including: creation and analysis of mathematical models describing the network, proposing self-adaptive control systems in response to node failures, control system parameter optimization, implementation using the software engineering approach, and evaluation in a real application. This thesis also justifies the relations between the "node degree" (the number of neighbor(s) of a node) and network connectivity through mathematic analysis, and proves the effectiveness of various types of controllers that can adjust power transmission of the IoT nodes in response to node failures. The controllers also take into consideration the energy consumption as part of the control goals. The evaluation is performed and comparison is made with other representative algorithms. The simulation results show that the proposals in this thesis can tolerate more random node failures and save more energy when compared with those representative algorithms. Additionally, the simulations demonstrate that the use of the bio-inspired algorithms allows optimizing the parameters of the controller. With respect to the implementation in a real system, the programming model called OSGi (Open Service Gateway Initiative) is integrated with the proposals in order to create a self-adaptive middleware, especially reconfiguring the software components at runtime when failures occur. The outcomes of this thesis contribute to theoretic research and practical applications of resilient topology control for large and distributed networks. The presented controller designs and optimization algorithms can be viewed as novel trials of the control and optimization techniques for the coming era of the IoT. The contributions of this thesis can be summarized as follows: (1) Mathematically, the fault-tolerant probability of a large-scale stochastic network is analyzed. It is studied how the probability of network connectivity depends on the communication range of the nodes, and what is the minimum number of neighbors to be added for network re-connection. (2) A fuzzy-logic control system is proposed, which obtains the desired node degree and in turn maintains the network connectivity when it is subject to node failures. There are different types of fuzzy-logic controllers evaluated by simulations, and the results demonstrate the improvement of fault-tolerant capability as compared to some other representative algorithms. (3) A simpler but more applicable approach, the two-loop control system is further investigated, and its control parameters are optimized by using some heuristic algorithms such as Cross Entropy (CE), Particle Swarm Optimization (PSO), and Differential Evolution (DE). (4) Most of the designs are evaluated by means of simulations, but part of the proposals are implemented and tested in a real-world application by combining the self-adaptive software technique and the control algorithms which are presented in this thesis.
Resumo:
Development of Internet-of-Services will be hampered by heterogeneous Internet-of-Things infrastructures, such as inconsistency in communicating with participating objects, connectivity between them, topology definition & data transfer, access via cloud computing for data storage etc. Our proposed solutions are applicable to a random topology scenario that allow establishing of multi-operational sensor networks out of single networks and/or single service networks with the participation of multiple networks; thus allowing virtual links to be created and resources to be shared. The designed layers are context-aware, application-oriented, and capable of representing physical objects to a management system, along with discovery of services. The reliability issue is addressed by deploying IETF supported IEEE 802.15.4 network model for low-rate wireless personal networks. Flow- sensor succeeded better results in comparison to the typical - sensor from reachability, throughput, energy consumption and diversity gain viewpoint and through allowing the multicast groups into maximum number, performances can be improved.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research examining effects of uncertainties of generic WSN platform and verifying the capability of SHM-oriented WSNs, particularly on demanding SHM applications like modal analysis and damage identification of real civil structures. This article first reviews the major technical uncertainties of both generic and SHM-oriented WSN platforms and efforts of SHM research community to cope with them. Then, effects of the most inherent WSN uncertainty on the first level of a common Output-only Modal-based Damage Identification (OMDI) approach are intensively investigated. Experimental accelerations collected by a wired sensory system on a benchmark civil structure are initially used as clean data before being contaminated with different levels of data pollutants to simulate practical uncertainties in both WSN platforms. Statistical analyses are comprehensively employed in order to uncover the distribution pattern of the uncertainty influence on the OMDI approach. The result of this research shows that uncertainties of generic WSNs can cause serious impact for level 1 OMDI methods utilizing mode shapes. It also proves that SHM-WSN can substantially lessen the impact and obtain truly structural information without having used costly computation solutions.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.
Resumo:
In the context of wireless sensor networks, we are motivated by the design of a tree network spanning a set of source nodes that generate packets, a set of additional relay nodes that only forward packets from the sources, and a data sink. We assume that the paths from the sources to the sink have bounded hop count, that the nodes use the IEEE 802.15.4 CSMA/CA for medium access control, and that there are no hidden terminals. In this setting, starting with a set of simple fixed point equations, we derive explicit conditions on the packet generation rates at the sources, so that the tree network approximately provides certain quality of service (QoS) such as end-to-end delivery probability and mean delay. The structures of our conditions provide insight on the dependence of the network performance on the arrival rate vector, and the topological properties of the tree network. Our numerical experiments suggest that our approximations are able to capture a significant part of the QoS aware throughput region (of a tree network), that is adequate for many sensor network applications. Furthermore, for the special case of equal arrival rates, default backoff parameters, and for a range of values of target QoS, we show that among all path-length-bounded trees (spanning a given set of sources and the data sink) that meet the conditions derived in the paper, a shortest path tree achieves the maximum throughput. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
It is essential to monitor deteriorated civil engineering structures cautiously to detect symptoms of their serious disruptions. A wireless sensor network can be an effective system for monitoring civil engineering structures. It is fast to deploy sensors especially in difficult-to-access areas, and it is extendable without any cable extensions. Since our target is to monitor deteriorations of civil engineering structures such as cracks at tunnel linings, most of the locations of sensors are known, and sensors are not required to move dynamically. Therefore, we focus on developing a deployment plan of a static network in order to reduce the value of a cost function such as initial installation cost and summation of communication distances of the network. The key issue of the deployment is the location of relays that forward sensing data from sensors to a data collection device called a gateway. In this paper, we propose a relay deployment-planning tool that can be used to design a wireless sensor network for monitoring civil engineering structures. For the planning tool, we formalize the model and implement a local search based algorithm to find a quasi-optimal solution. Our solution guarantees two routings from a sensor to a gateway, which can provide higher reliability of the network. We also show the application of our experimental tool to the actual environment in the London Underground.
Resumo:
Existing Building/Energy Management Systems (BMS/EMS) fail to convey holistic performance to the building manager. A 20% reduction in energy consumption can be achieved by efficiently operated buildings compared with current practice. However, in the majority of buildings, occupant comfort and energy consumption analysis is primarily restricted by available sensor and meter data. Installation of a continuous monitoring process can significantly improve the building systems’ performance. We present WSN-BMDS, an IP-based wireless sensor network building monitoring and diagnostic system. The main focus of WSN-BMDS is to obtain much higher degree of information about the building operation then current BMSs are able to provide. Our system integrates a heterogeneous set of wireless sensor nodes with IEEE 802.11 backbone routers and the Global Sensor Network (GSN) web server. Sensing data is stored in a database at the back office via UDP protocol and can be access over the Internet using GSN. Through this demonstration, we show that WSN-BMDS provides accurate measurements of air-temperature, air-humidity, light, and energy consumption for particular rooms in our target building. Our interactive graphical user interface provides a user-friendly environment showing live network topology, monitor network statistics, and run-time management actions on the network. We also demonstrate actuation by changing the artificial light level in one of the rooms.
Resumo:
The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the development and deployment of wireless sensor network for crop monitoring in the paddy fields of Kuttanad, a region of Kerala, the southern state of India.
Resumo:
In this work, we will give a detailed tutorial instruction about how to use the Mobile Multi-Media Wireless Sensor Networks (M3WSN) simulation framework. The M3WSN framework has been published as a scientific paper in the 6th International Workshop on OMNeT++ (2013) [1]. M3WSN framework enables the multimedia transmission of real video se- quence. Therefore, a set of multimedia algorithms, protocols, and services can be evaluated by using QoE metrics. Moreover, key video-related information, such as frame types, GoP length and intra-frame dependency can be used for creating new assessment and optimization solutions. To support mobility, M3WSN utilizes different mobility traces to enable the understanding of how the network behaves under mobile situations. This tutorial will cover how to install and configure the M3WSN framework, setting and running the experiments, creating mobility and video traces, and how to evaluate the performance of different protocols. The tutorial will be given in an environment of Ubuntu 12.04 LTS and OMNeT++ 4.2.
Resumo:
Two of the main issues in wireless industrial Internet of Things applications are interoperability and network lifetime. In this work we extend a semantic interoperability platform and introduce an application-layer sleepy nodes protocol that can leverage on information stored in semantic repositories. We propose an integration platform for managing the sleep states and an application layer protocol based upon the Constraint Application Layer protocol. We evaluate our system on windowing based task allocation strategies, aiming for lower overall energy consumption that results in higher network lifetime.
Resumo:
La Internet de las Cosas (IoT), como parte de la Futura Internet, se ha convertido en la actualidad en uno de los principales temas de investigación; en parte gracias a la atención que la sociedad está poniendo en el desarrollo de determinado tipo de servicios (telemetría, generación inteligente de energía, telesanidad, etc.) y por las recientes previsiones económicas que sitúan a algunos actores, como los operadores de telecomunicaciones (que se encuentran desesperadamente buscando nuevas oportunidades), al frente empujando algunas tecnologías interrelacionadas como las comunicaciones Máquina a Máquina (M2M). En este contexto, un importante número de actividades de investigación a nivel mundial se están realizando en distintas facetas: comunicaciones de redes de sensores, procesado de información, almacenamiento de grandes cantidades de datos (big--‐data), semántica, arquitecturas de servicio, etc. Todas ellas, de forma independiente, están llegando a un nivel de madurez que permiten vislumbrar la realización de la Internet de las Cosas más que como un sueño, como una realidad tangible. Sin embargo, los servicios anteriormente mencionados no pueden esperar a desarrollarse hasta que las actividades de investigación obtengan soluciones holísticas completas. Es importante proporcionar resultados intermedios que eviten soluciones verticales realizadas para desarrollos particulares. En este trabajo, nos hemos focalizado en la creación de una plataforma de servicios que pretende facilitar, por una parte la integración de redes de sensores y actuadores heterogéneas y geográficamente distribuidas, y por otra lado el desarrollo de servicios horizontales utilizando dichas redes y la información que proporcionan. Este habilitador se utilizará para el desarrollo de servicios y para la experimentación en la Internet de las Cosas. Previo a la definición de la plataforma, se ha realizado un importante estudio focalizando no sólo trabajos y proyectos de investigación, sino también actividades de estandarización. Los resultados se pueden resumir en las siguientes aseveraciones: a) Los modelos de datos definidos por el grupo “Sensor Web Enablement” (SWE™) del “Open Geospatial Consortium (OGC®)” representan hoy en día la solución más completa para describir las redes de sensores y actuadores así como las observaciones. b) Las interfaces OGC, a pesar de las limitaciones que requieren cambios y extensiones, podrían ser utilizadas como las bases para acceder a sensores y datos. c) Las redes de nueva generación (NGN) ofrecen un buen sustrato que facilita la integración de redes de sensores y el desarrollo de servicios. En consecuencia, una nueva plataforma de Servicios, llamada Ubiquitous Sensor Networks (USN), se ha definido en esta Tesis tratando de contribuir a rellenar los huecos previamente mencionados. Los puntos más destacados de la plataforma USN son: a) Desde un punto de vista arquitectónico, sigue una aproximación de dos niveles (Habilitador y Gateway) similar a otros habilitadores que utilizan las NGN (como el OMA Presence). b) Los modelos de datos están basado en los estándares del OGC SWE. iv c) Está integrado en las NGN pero puede ser utilizado sin ellas utilizando infraestructuras IP abiertas. d) Las principales funciones son: Descubrimiento de sensores, Almacenamiento de observaciones, Publicacion--‐subscripcion--‐notificación, ejecución remota homogénea, seguridad, gestión de diccionarios de datos, facilidades de monitorización, utilidades de conversión de protocolos, interacciones síncronas y asíncronas, soporte para el “streaming” y arbitrado básico de recursos. Para demostrar las funcionalidades que la Plataforma USN propuesta pueden ofrecer a los futuros escenarios de la Internet de las Cosas, se presentan resultados experimentales de tres pruebas de concepto (telemetría, “Smart Places” y monitorización medioambiental) reales a pequeña escala y un estudio sobre semántica (sistema de información vehicular). Además, se está utilizando actualmente como Habilitador para desarrollar tanto experimentación como servicios reales en el proyecto Europeo SmartSantander (que aspira a integrar alrededor de 20.000 dispositivos IoT). v Abstract Internet of Things, as part of the Future Internet, has become one of the main research topics nowadays; in part thanks to the pressure the society is putting on the development of a particular kind of services (Smart metering, Smart Grids, eHealth, etc.), and by the recent business forecasts that situate some players, like Telecom Operators (which are desperately seeking for new opportunities), at the forefront pushing for some interrelated technologies like Machine--‐to--‐Machine (M2M) communications. Under this context, an important number of research activities are currently taking place worldwide at different levels: sensor network communications, information processing, big--‐ data storage, semantics, service level architectures, etc. All of them, isolated, are arriving to a level of maturity that envision the achievement of Internet of Things (IoT) more than a dream, a tangible goal. However, the aforementioned services cannot wait to be developed until the holistic research actions bring complete solutions. It is important to come out with intermediate results that avoid vertical solutions tailored for particular deployments. In the present work, we focus on the creation of a Service--‐level platform intended to facilitate, from one side the integration of heterogeneous and geographically disperse Sensors and Actuator Networks (SANs), and from the other the development of horizontal services using them and the information they provide. This enabler will be used for horizontal service development and for IoT experimentation. Prior to the definition of the platform, we have realized an important study targeting not just research works and projects, but also standardization topics. The results can be summarized in the following assertions: a) Open Geospatial Consortium (OGC®) Sensor Web Enablement (SWE™) data models today represent the most complete solution to describe SANs and observations. b) OGC interfaces, despite the limitations that require changes and extensions, could be used as the bases for accessing sensors and data. c) Next Generation Networks (NGN) offer a good substrate that facilitates the integration of SANs and the development of services. Consequently a new Service Layer platform, called Ubiquitous Sensor Networks (USN), has been defined in this Thesis trying to contribute to fill in the previous gaps. The main highlights of the proposed USN Platform are: a) From an architectural point of view, it follows a two--‐layer approach (Enabler and Gateway) similar to other enablers that run on top of NGN (like the OMA Presence). b) Data models and interfaces are based on the OGC SWE standards. c) It is integrated in NGN but it can be used without it over open IP infrastructures. d) Main functions are: Sensor Discovery, Observation Storage, Publish--‐Subscribe--‐Notify, homogeneous remote execution, security, data dictionaries handling, monitoring facilities, authorization support, protocol conversion utilities, synchronous and asynchronous interactions, streaming support and basic resource arbitration. vi In order to demonstrate the functionalities that the proposed USN Platform can offer to future IoT scenarios, some experimental results have been addressed in three real--‐life small--‐scale proofs--‐of concepts (Smart Metering, Smart Places and Environmental monitoring) and a study for semantics (in--‐vehicle information system). Furthermore we also present the current use of the proposed USN Platform as an Enabler to develop experimentation and real services in the SmartSantander EU project (that aims at integrating around 20.000 IoT devices).
Resumo:
Las redes del futuro, incluyendo las redes de próxima generación, tienen entre sus objetivos de diseño el control sobre el consumo de energía y la conectividad de la red. Estos objetivos cobran especial relevancia cuando hablamos de redes con capacidades limitadas, como es el caso de las redes de sensores inalámbricos (WSN por sus siglas en inglés). Estas redes se caracterizan por estar formadas por dispositivos de baja o muy baja capacidad de proceso y por depender de baterías para su alimentación. Por tanto la optimización de la energía consumida se hace muy importante. Son muchas las propuestas que se han realizado para optimizar el consumo de energía en este tipo de redes. Quizás las más conocidas son las que se basan en la planificación coordinada de periodos de actividad e inactividad, siendo una de las formas más eficaces para extender el tiempo de vida de las baterías. La propuesta que se presenta en este trabajo se basa en el control de la conectividad mediante una aproximación probabilística. La idea subyacente es que se puede esperar que una red mantenga la conectividad si todos sus nodos tienen al menos un número determinado de vecinos. Empleando algún mecanismo que mantenga ese número, se espera que se pueda mantener la conectividad con un consumo energético menor que si se empleara una potencia de transmisión fija que garantizara una conectividad similar. Para que el mecanismo sea eficiente debe tener la menor huella posible en los dispositivos donde se vaya a emplear. Por eso se propone el uso de un sistema auto-adaptativo basado en control mediante lógica borrosa. En este trabajo se ha diseñado e implementado el sistema descrito, y se ha probado en un despliegue real confirmando que efectivamente existen configuraciones posibles que permiten mantener la conectividad ahorrando energía con respecto al uso de una potencia de transmisión fija. ABSTRACT. Among the design goals for future networks, including next generation networks, we can find the energy consumption and the connectivity. These two goals are of special relevance when dealing with constrained networks. That is the case of Wireless Sensors Networks (WSN). These networks consist of devices with low or very low processing capabilities. They also depend on batteries for their operation. Thus energy optimization becomes a very important issue. Several proposals have been made for optimizing the energy consumption in this kind of networks. Perhaps the best known are those based on the coordinated planning of active and sleep intervals. They are indeed one of the most effective ways to extend the lifetime of the batteries. The proposal presented in this work uses a probabilistic approach to control the connectivity of a network. The underlying idea is that it is highly probable that the network will have a good connectivity if all the nodes have a minimum number of neighbors. By using some mechanism to reach that number, we hope that we can preserve the connectivity with a lower energy consumption compared to the required one if a fixed transmission power is used to achieve a similar connectivity. The mechanism must have the smallest footprint possible on the devices being used in order to be efficient. Therefore a fuzzy control based self-adaptive system is proposed. This work includes the design and implementation of the described system. It also has been validated in a real scenario deployment. We have obtained results supporting that there exist configurations where it is possible to get a good connectivity saving energy when compared to the use of a fixed transmission power for a similar connectivity.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.