969 resultados para Intermodal freight transportation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Editors: 1920, The Traffic Publishing Company.--1921-1929, H.G. Williams and C.J. Fagg. 1931-41, C.J. Fagg. (with W.W. Weller, 1937-41).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportation plays a major role in the gross domestic product of various nations. There are, however, many obstacles hindering the transportation sector. Cost-efficiency along with proper delivery times, high frequency and reliability are not a straightforward task. Furthermore, environmental friendliness has increased the importance of the whole transportation sector. This development will change roles inside the transportation sector. Even now, but especially in the future, decisions regarding the transportation sector will be partly based on emission levels and other externalities originating from transportation in addition to pure transportation costs. There are different factors, which could have an impact on the transportation sector. IMO’s sulphur regulation is estimated to increase the costs of short sea shipping in the Baltic Sea. Price development of energy could change the roles of different transport modes. Higher awareness of the environmental impacts originating from transportation could also have an impact on the price level of more polluting transport modes. According to earlier research, increased inland transportation, modal shift and slowsteaming can be possible results of these changes in the transportation sector. Possible changes in the transportation sector and ways to settle potential obstacles are studied in this dissertation. Furthermore, means to improve cost-efficiency and to decrease environmental impacts originating from transportation are researched. Hypothetical Finnish dry port network and Rail Baltica transport corridor are studied in this dissertation. Benefits and disadvantages are studied with different methodologies. These include gravitational models, which were optimized with linear integer programming, discrete-event and system dynamics simulation, an interview study and a case study. Geographical focus is on the Baltic Sea Region, but the results can be adapted to other geographical locations with discretion. Results indicate that the dry port concept has benefits, but optimization regarding the location and the amount of dry ports plays an important role. In addition, the utilization of dry ports for freight transportation should be carefully operated, since only a certain amount of total freight volume can be cost-efficiently transported through dry ports. If dry ports are created and located without proper planning, they could actually increase transportation costs and delivery times of the whole transportation system. With an optimized dry port network, transportation costs can be lowered in Finland with three to five dry ports. Environmental impacts can be lowered with up to nine dry ports. If more dry ports are added to the system, the benefits become very minor, i.e. payback time of investments becomes extremely long. Furthermore, dry port network could support major transport corridors such as Rail Baltica. Based on an analysis of statistics and interview study, there could be enough freight volume available for Rail Baltica, especially, if North-West Russia is part of the Northern end of the corridor. Transit traffic to and from Russia (especially through the Baltic States) plays a large role. It could be possible to increase transit traffic through Finland by connecting the potential Finnish dry port network and the studied transport corridor. Additionally, sulphur emission regulation is assumed to increase the attractiveness of Rail Baltica in the year 2015. Part of the transit traffic could be rerouted along Rail Baltica instead of the Baltic Sea, since the price level of sea transport could increase due to the sulphur regulation. Both, the hypothetical Finnish dry port network and Rail Baltica transport corridor could benefit each other. The dry port network could gain more market share from Russia, but also from Central Europe, which is the other end of Rail Baltica. In addition, further Eastern countries could also be connected to achieve higher potential freight volume by rail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a study of how transportation policy can be fashioned to improve Iowa's long-term economic prospects. The research focuses on the state level and covers pricing, resource allocation, investment, and other issues that directly affect the performance of public facilities that support transportation of goods and people to and from points in Iowa. Chapter 1 is an introduction. Chapter 2 begins with an assessment of how Iowa's economy is changing, both functionally and spatially. Commuting patterns and methods of goods movement are then discussed. The purpose of this analysis is to provide a context for the exploration of transportation policy issues in subsequent chapters. In Chapter 3 a framework is established for evaluating changes in transportation policies. A working definition of economic development is given and the role of government policies in making an area more attractive to economic activity is considered. Chapter 4 analyzes public policy options for Iowa's roads and highways. These policy options are intended to help the state compete for economic activity. Chapter 5 assesses alternative investment strategies for major navigational facilities on the upper Mississippi River. Chapter 6 examines major transportation policy issues in Iowa's agricultural sector. The current magnitude of agricultural shipments and the roles of several modes are presented. After focusing on issues related to railroad competitiveness, the analysis turns to how Iowa's rural roads should be financed. The need for joint investment and pricing decisions affecting waterways, railroads, and rural roads is stressed. Chapter 7 examines the current status of freight transportation in Iowa. An assessment is made of issues related to trucking and of intermodal transportation and its potential for cost-effective shipping to and from businesses in Iowa. Chapter 8 summarizes the key findings of this study, offering ten recommendations. These recommendations relate to transportation as a means of facilitating economic development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Iowa’s Rail Environment Iowa’s rail transportation system provides both freight and passenger service. Rail serves a variety of trips, including those within Iowa and those to other states as well as to foreign markets. While rail competes with other modes, it also cooperates with those modes to provide intermodal services to Iowans. In 2009 Iowa’s rail transportation system could be described as follows: Freight Iowa’s 130,000-mile freight transportation system includes an extensive railroad network, a well-developed highway system, two bordering navigable waterways, and a pipeline network as well as air cargo facilities. While rail accounts for only 3 percent of the freight network, it carries 43 percent of Iowa’s freight tonnage. A great variety of commodities ranging from fresh fish to textiles to optical products are moved by rail. However, most of the Iowa rail shipments consist of bulk commodities, including grain, grain products, coal, ethanol, and fertilizers. The railroad network performs an important role in moving bulk commodities produced and consumed in the state to local processors, livestock feeders, river terminals and ports for foreign export. The railroad’s ability to haul large volumes, long distances at low costs will continue to be a major factor in moving freight and improving the economy of Iowa. Key 2008 Facts • 3,945 miles of track • 18 railroads • 49.5 million tons shipped • 39.7 million tons received • 2 Amtrak routes • 6 Amtrak stations • 66,286 rail passenger rides Key Rail Trends • slightly fewer miles being operated; • railroads serving Iowa has remained the same; • more rail freight traffic; • more tons hauled per car; • higher average rail rates per ton-mile since 2002; • more car and tons hauled per locomotive; and • more ton miles per gallon of fuel consumed. Iowa’s rail system and service has been evolving over time relative to its size, financial conditions, and competition from other modes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 2009 Iowa Railroad System Plan details the state’s role in providing and preserving adequate, safe and efficient rail transportation services to Iowans. The plan is intended to serve as a guide for decision makers and provides a basis for future Iowa DOT policy, funding priorities and programming decisions that affect rail transportation service in Iowa. The primary purpose of the 2009 Iowa Railroad System Plan is to guide the Iowa DOT in pursuing actions that maintain and improve railroad transportation in Iowa. The plan is a component of the Iowa Statewide Transportation Plan known as “Iowa in Motion.” This plan considers railroads from an intermodal perspective. Many commodities that move by rail also move by other modes (principally trucks) during part of their journey from origin to destination. The same is true of persons who use rail passenger service to make trips and who must also rely on other modes to access rail service. Therefore, railroads are part of larger intermodal freight and passenger transportation systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

What is Iowa in Motion? The Iowa Department of Transportation is continuing the journey to develop Iowa’s future transportation system. This ongoing planning process, known as Iowa in Motion, was developed in response to the Intermodal Surface Transportation Efficiency Act (ISTEA) and Iowa’s changing transportation needs. The completion of Parts I, II and III of Iowa in Motion has led to development of this State Transportation Plan. Part IV includes activities, both current and future, to support the plan. This State Transportation Plan represents the thoughts and concerns of thousands of Iowans. Individuals, metropolitan planning organizations (MPOs), regional planning affiliations (RPAs), associations and organizations have become involved and have made recommendations concerning which direction should be followed regarding transportation investments. This plan represents their extensive input into the Iowa in Motion process and consensus building as we moved towards adoption of this State Transportation Plan. The adopted plan serves as a guide for development of transportation policies, goals, objectives, initiatives and investment decisions through the year 2020.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the industry of the case company, transportation and warehousing costs account for more than 10% of the total cost which is more than on average. A Finnish company has an understanding that by sending larger shipments in parcels, they could save tens of thousands of euros annually in freight costs in Finland’s domestic shipments. To achieve these savings and optimize total logistics cost, company’s interest is to find out which is the cost efficient way of shipping road shipments of certain volumes; in parcel boxes or on pallets, and what should be the split volume determining the shipment type. Distribution center (DC) costs affect this decision and therefore they need to be also evaluated to determine the total logistics cost savings. Main results were achieved by executing activity-based costing-calculations including DC and road freight costs to determine the ideal split volume with which the total logistics cost is optimal. Calculations were done for Finland’s DC, separately for two main road freight destinations, Finland and Sweden, which cover 50% of road shipment spend. Data for calculations was collected both manually and automatically from various internal and external sources, such as the company ERP system and logistics service providers’ (LSP) reporting. DC processes were studied in practice and compared to model processes. Currently used freight rates were compared to existing pricing models and freight service tendering process was evaluated by participating in the process and comparing it to the models based on literature. The results show that the potential savings are not as significant as the company hoped for, mainly because of packing work increasing DC labor cost. Annual savings by setting ideal split volume per country would account for 0,4 % of the warehousing and transportation costs of shipments in scope of this thesis. Split volume should be set separately for each route, mainly because the pricing model for road freight is different in each country. For some routes bigger parcels should be sent but for some routes pallets should be used more. Next step is to do these calculations for remaining routes to determine total savings potential. Other findings show that the processes in the DC are designed well and the company could achieve savings by executing tenders more efficiently. Company should also pay more attention to parcel pricing and packing the shipments accordingly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article provides a new methodology for estimating fuel consumption and emissions by enabling a correct comparison between freight transportation modes. The approach is developed and integrated as a part of an intelligent transportation system dealing with goods movement. A key issue is related to energy consumption ratios and consequent CO2 emissions. Energy consumption ratios are often used based on transport demand. However, including other ratios based on transport supply can be useful. Furthermore, it is important to indicate which factors are associated with variations in energy consumption and emissions; especially of interest are parameters that have a higher incidence and order of magnitude, in order to fairly compare and understand the difference between transport modes and sub-modes. The study finds that the use of an energy consumption equation can improve the quality of the estimates. The study proposes that coefficients that define the energy consumption equation should be tested to determine market niches and sources of improvement in energy consumption according to the category of vehicles, fuel types used, and classes of products transported.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The assessment on introducing Longer and Heavier Vehicles (LHVs) on the road freight transport demand is performed in this paper by applying an integrated modeling approach composed of a Random Utility-Based Multiregional Input-Output model (RUBMRIO) and a road transport network model. The approach strongly supports the concept that changes in transport costs derived from the LHVs allowance as well as the economic structure of regions have both direct and indirect effects on the road freight transport system. In addition, we estimate the magnitude and extent of demand changes in the road freight transportation system by using the commodity-based structure of the approach to identify the effect on traffic flows and on pollutant emissions over the whole network of Spain by considering a sensitivity analysis of the main parameters which determine the share of Heavy-Goods Vehicles (HGVs) and LHVs. The results show that the introduction of LHVs will strengthen the competitiveness of the road haulage sector by reducing costs, emissions, and the total freight vehicles required.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transportation Department, Office of Transportation Energy Policy, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Federal Railroad Administration, Office of Research and Development, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.