955 resultados para Interconnected devices network


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The human malaria parasite Plasmodium falciparum contains sphingomyelin synthase in its Golgi apparatus and in a network of tubovesicular membranes in the cytoplasm of the infected erythrocyte. Palmitoyl and decanoyl analogues of 1-phenyl-2-acylamino-3-morpholino-1-propanol inhibit the enzyme activity in infected erythrocytes. An average of 35% of the activity is extremely sensitive to these drugs and undergoes a rapid, linear decrease at drug concentrations of 0.05-1 microM. The remaining 65% suffers a slower linear inhibition at drug concentrations ranging from 25 to 500 microM. Evidence is presented that inhibition of the sensitive fraction alone selectively disrupts the appearance of the interconnected tubular network in the host cell cytoplasm, without blocking secretory development at the parasite plasma membrane or in organelles within the parasite, such as the Golgi and the digestive food vacuole. This inhibition also blocks parasite proliferation in culture, indicating that the sensitive sphingomyelin synthase activity as well as the tubovesicular network may provide rational targets for drugs against malaria.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The current optical communications network consists of point-to-point optical transmission paths interconnected with relatively low-speed electronic switching and routing devices. As the demand for capacity increases, then higher speed electronic devices will become necessary. It is however hard to realise electronic chip-sets above 10 Gbit/s, and therefore to increase the achievable performance of the network, electro-optic and all-optic switching and routing architectures are being investigated. This thesis aims to provide a detailed experimental analysis of high-speed optical processing within an optical time division multiplexed (OTDM) network node. This includes the functions of demultiplexing, 'drop and insert' multiplexing, data regeneration, and clock recovery. It examines the possibilities of combining these tasks using a single device. Two optical switching technologies are explored. The first is an all-optical device known as 'semiconductor optical amplifier-based nonlinear optical loop mirror' (SOA-NOLM). Switching is achieved by using an intense 'control' pulse to induce a phase shift in a low-intensity signal propagating through an interferometer. Simultaneous demultiplexing, data regeneration and clock recovery are demonstrated for the first time using a single SOA-NOLM. The second device is an electroabsorption (EA) modulator, which until this thesis had been used in a uni-directional configuration to achieve picosecond pulse generation, data encoding, demultiplexing, and 'drop and insert' multiplexing. This thesis presents results on the use of an EA modulator in a novel bi-directional configuration. Two independent channels are demultiplexed from a high-speed OTDM data stream using a single device. Simultaneous demultiplexing with stable, ultra-low jitter clock recovery is demonstrated, and then used in a self-contained 40 Gbit/s 'drop and insert' node. Finally, a 10 GHz source is analysed that exploits the EA modulator bi-directionality to increase the pulse extinction ratio to a level where it could be used in an 80 Gbit/s OTDM network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effective control of morphology and electrical connectivity of networks of single-walled carbon nanotubes (SWCNTs) by using rough, nanoporous silica supports of Fe catalyst nanoparticles in catalytic chemical vapor deposition is demonstrated experimentally. The very high quality of the nanotubes is evidenced by the G-to-D Raman peak ratios (>50) within the range of the highest known ratios. Transitions from separated nanotubes on smooth SiO2 surface to densely interconnected networks on the nanoporous SiO2 are accompanied by an almost two-order of magnitude increase of the nanotube density. These transitions herald the hardly detectable onset of the nanoscale connectivity and are confirmed by the microanalysis and electrical measurements. The achieved effective nanotube interconnection leads to the dramatic, almost three-orders of magnitude decrease of the SWCNT network resistivity compared to networks of similar density produced by wet chemistry-based assembly of preformed nanotubes. The growth model, supported by multiscale, multiphase modeling of SWCNT nucleation reveals multiple constructive roles of the porous catalyst support in facilitating the catalyst saturation and SWCNT nucleation, consistent with the observed higher density of longer nanotubes. The associated mechanisms are related to the unique surface conditions (roughness, wettability, and reduced catalyst coalescence) on the porous SiO2 and the increased carbon supply through the supporting porous structure. This approach is promising for the direct integration of SWCNT networks into Si-based nanodevice platforms and multiple applications ranging from nanoelectronics and energy conversion to bio- and environmental sensing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we consider the problem of association of wireless stations (STAs) with an access network served by a wireless local area network (WLAN) and a 3G cellular network. There is a set of WLAN Access Points (APs) and a set of 3G Base Stations (BSs) and a number of STAs each of which needs to be associated with one of the APs or one of the BSs. We concentrate on downlink bulk elastic transfers. Each association provides each ST with a certain transfer rate. We evaluate an association on the basis of the sum log utility of the transfer rates and seek the utility maximizing association. We also obtain the optimal time scheduling of service from a 3G BS to the associated STAs. We propose a fast iterative heuristic algorithm to compute an association. Numerical results show that our algorithm converges in a few steps yielding an association that is within 1% (in objective value) of the optimal (obtained through exhaustive search); in most cases the algorithm yields an optimal solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy storage is a potential alternative to conventional network reinforcementof the low voltage (LV) distribution network to ensure the grid’s infrastructure remainswithin its operating constraints. This paper presents a study on the control of such storagedevices, owned by distribution network operators. A deterministic model predictive control (MPC) controller and a stochastic receding horizon controller (SRHC) are presented, wherethe objective is to achieve the greatest peak reduction in demand, for a given storagedevice specification, taking into account the high level of uncertainty in the prediction of LV demand. The algorithms presented in this paper are compared to a standard set-pointcontroller and bench marked against a control algorithm with a perfect forecast. A specificcase study, using storage on the LV network, is presented, and the results of each algorithmare compared. A comprehensive analysis is then carried out simulating a large number of LV networks of varying numbers of households. The results show that the performance of each algorithm is dependent on the number of aggregated households. However, on a typical aggregation, the novel SRHC algorithm presented in this paper is shown to outperform each of the comparable storage control techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Distribution Network Operators (DNOs) role is becoming more difficult as electric vehicles and electric heating penetrate the network, increasing the demand. As a result it becomes harder for the distribution networks infrastructure to remain within its operating constraints. Energy storage is a potential alternative to conventional network reinforcement such as upgrading cables and transformers. The research presented here in this paper shows that due to the volatile nature of the LV network, the control approach used for energy storage has a significant impact on performance. This paper presents and compares control methodologies for energy storage where the objective is to get the greatest possible peak demand reduction across the day from a pre-specified storage device. The results presented show the benefits and detriments of specific types of control on a storage device connected to a single phase of an LV network, using aggregated demand profiles based on real smart meter data from individual homes. The research demonstrates an important relationship between how predictable an aggregation is and the best control methodology required to achieve the objective.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reinforcing the Low Voltage (LV) distribution network will become essential to ensure it remains within its operating constraints as demand on the network increases. The deployment of energy storage in the distribution network provides an alternative to conventional reinforcement. This paper presents a control methodology for energy storage to reduce peak demand in a distribution network based on day-ahead demand forecasts and historical demand data. The control methodology pre-processes the forecast data prior to a planning phase to build in resilience to the inevitable errors between the forecasted and actual demand. The algorithm uses no real time adjustment so has an economical advantage over traditional storage control algorithms. Results show that peak demand on a single phase of a feeder can be reduced even when there are differences between the forecasted and the actual demand. In particular, results are presented that demonstrate when the algorithm is applied to a large number of single phase demand aggregations that it is possible to identify which of these aggregations are the most suitable candidates for the control methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Applications based on Wireless Sensor Networks for Internet of Things scenarios are on the rise. The multiple possibilities they offer have spread towards previously hard to imagine fields, like e-health or human physiological monitoring. An application has been developed for its usage in scenarios where data collection is applied to smart spaces, aiming at its usage in fire fighting and sports. This application has been tested in a gymnasium with real, non-simulated nodes and devices. A Graphic User Interface has been implemented to suggest a series of exercises to improve a sportsman/woman s condition, depending on the context and their profile. This system can be adapted to a wide variety of e-health applications with minimum changes, and the user will interact using different devices, like smart phones, smart watches and/or tablets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, we can send audio on the Internet for multiples uses like telephony, broadcast audio or teleconferencing. The issue comes when you need to synchronize the sound from different sources because the network where we are going to work could lose packets and introduce delay in the delivery. This can also come because the sound cards could be work in different speeds. In this project, we will work with two computers emitting sound (one will simulate the left channel (mono) of a stereo signal, and the other the right channel) and connected with a third computer by a TCP network. The last computer must get the sound from both computers and reproduce it in a speaker properly (without delay). So, basically, the main goal of the project is to synchronize multi-track sound over a network. TCP networks introduce latency into data transfers. Streaming audio suffers from two problems: a delay and an offset between the channels. This project explores the causes of latency, investigates the affect of the inter-channel offset and proposes a solution to synchronize the received channels. In conclusion, a good synchronization of the sound is required in a time when several audio applications are being developed. When two devices are ready to send audio over a network, this multi-track sound will arrive at the third computer with an offset giving a negative effect to the listener. This project has dealt with this offset achieving a good synchronization of the multitrack sound getting a good effect on the listener. This was achieved thanks to the division of the project into several steps having constantly a good vision of the problem, a good scalability and having controlled the latency at all times. As we can see in the chapter 4 of the project, a lack of synchronization over c. 100μs is audible to the listener. RESUMEN. A día de hoy, podemos transmitir audio a través de Internet por varios motivos como pueden ser: una llamada telefónica, una emisión de audio o una teleconferencia. El problema viene cuando necesitas sincronizar ese sonido producido por los diferentes orígenes ya que la red a la que nos vamos a conectar puede perder los paquetes y/o introducir un retardo en las entregas de los mismos. Así mismo, estos retardos también pueden venir producidos por las diferentes velocidades a las que trabajan las tarjetas de sonido de cada dispositivo. En este proyecto, se ha trabajado con dos ordenadores emitiendo sonido de manera intermitente (uno se encargará de simular el canal izquierdo (mono) de la señal estéreo emitida, y el otro del canal derecho), estando conectados a través de una red TCP a un tercer ordenador, el cual debe recibir el sonido y reproducirlo en unos altavoces adecuadamente y sin retardo (deberá juntar los dos canales y reproducirlo como si de estéreo de tratara). Así, el objetivo principal de este proyecto es el de encontrar la manera de sincronizar el sonido producido por los dos ordenadores y escuchar el conjunto en unos altavoces finales. Las redes TCP introducen latencia en la transferencia de datos. El streaming de audio emitido a través de una red de este tipo puede sufrir dos grandes contratiempos: retardo y offset, los dos existentes en las comunicaciones entre ambos canales. Este proyecto se centra en las causas de ese retardo, investiga el efecto que provoca el offset entre ambos canales y propone una solución para sincronizar los canales en el dispositivo receptor. Para terminar, una buena sincronización del sonido es requerida en una época donde las aplicaciones de audio se están desarrollando continuamente. Cuando los dos dispositivos estén preparados para enviar audio a través de la red, la señal de sonido multi-canal llegará al tercer ordenador con un offset añadido, por lo que resultará en una mala experiencia en la escucha final. En este proyecto se ha tenido que lidiar con ese offset mencionado anteriormente y se ha conseguido una buena sincronización del sonido multi-canal obteniendo un buen efecto en la escucha final. Esto ha sido posible gracias a una división del proyecto en diversas etapas que proporcionaban la facilidad de poder solucionar los errores en cada paso dando una importante visión del problema y teniendo controlada la latencia en todo momento. Como se puede ver en el capítulo 4 del proyecto, la falta de sincronización sobre una diferencia de 100μs entre dos canales (offset) empieza a ser audible en la escucha final.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Fibre Distributed Data Interface (FDDI) represents the new generation of local area networks (LANs). These high speed LANs are capable of supporting up to 500 users over a 100 km distance. User traffic is expected to be as diverse as file transfers, packet voice and video. As the proliferation of FDDI LANs continues, the need to interconnect these LANs arises. FDDI LAN interconnection can be achieved in a variety of different ways. Some of the most commonly used today are public data networks, dial up lines and private circuits. For applications that can potentially generate large quantities of traffic, such as an FDDI LAN, it is cost effective to use a private circuit leased from the public carrier. In order to send traffic from one LAN to another across the leased line, a routing algorithm is required. Much research has been done on the Bellman-Ford algorithm and many implementations of it exist in computer networks. However, due to its instability and problems with routing table loops it is an unsatisfactory algorithm for interconnected FDDI LANs. A new algorithm, termed ISIS which is being standardized by the ISO provides a far better solution. ISIS will be implemented in many manufacturers routing devices. In order to make the work as practical as possible, this algorithm will be used as the basis for all the new algorithms presented. The ISIS algorithm can be improved by exploiting information that is dropped by that algorithm during the calculation process. A new algorithm, called Down Stream Path Splits (DSPS), uses this information and requires only minor modification to some of the ISIS routing procedures. DSPS provides a higher network performance, with very little additional processing and storage requirements. A second algorithm, also based on the ISIS algorithm, generates a massive increase in network performance. This is achieved by selecting alternative paths through the network in times of heavy congestion. This algorithm may select the alternative path at either the originating node, or any node along the path. It requires more processing and memory storage than DSPS, but generates a higher network power. The final algorithm combines the DSPS algorithm with the alternative path algorithm. This is the most flexible and powerful of the algorithms developed. However, it is somewhat complex and requires a fairly large storage area at each node. The performance of the new routing algorithms is tested in a comprehensive model of interconnected LANs. This model incorporates the transport through physical layers and generates random topologies for routing algorithm performance comparisons. Using this model it is possible to determine which algorithm provides the best performance without introducing significant complexity and storage requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract - Mobile devices in the near future will need to collaborate to fulfill their function. Collaboration will be done by communication. We use a real world example of robotic soccer to come up with the necessary structures required for robotic communication. A review of related work is done and it is found no examples come close to providing a RANET. The robotic ad hoc network (RANET) we suggest uses existing structures pulled from the areas of wireless networks, peer to peer and software life-cycle management. Gaps are found in the existing structures so we describe how to extend some structures to satisfy the design. The RANET design supports robot cooperation by exchanging messages, discovering needed skills that other robots on the network may possess and the transfer of these skills. The network is built on top of a Bluetooth wireless network and uses JXTA to communicate and transfer skills. OSGi bundles form the skills that can be transferred. To test the nal design a reference implementation is done. Deficiencies in some third party software is found, specifically JXTA and JamVM and GNU Classpath. Lastly we look at how to fix the deciencies by porting the JXTA C implementation to the target robotic platform and potentially eliminating the TCP/IP layer, using UDP instead of TCP or using an adaptive TCP/IP stack. We also propose a future areas of investigation; how to seed the configuration for the Personal area network (PAN) Bluetooth protocol extension so a Bluetooth TCP/IP link is more quickly formed and using the STP to allow multi-hop messaging and transfer of skills.