990 resultados para Inter-element spacing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a clustered approach for blind beamfoming from ad-hoc microphone arrays. In such arrangements, microphone placement is arbitrary and the speaker may be close to one, all or a subset of microphones at a given time. Practical issues with such a configuration mean that some microphones might be better discarded due to poor input signal to noise ratio (SNR) or undesirable spatial aliasing effects from large inter-element spacings when beamforming. Large inter-microphone spacings may also lead to inaccuracies in delay estimation during blind beamforming. In such situations, using a cluster of microphones (ie, a sub-array), closely located both to each other and to the desired speech source, may provide more robust enhancement than the full array. This paper proposes a method for blind clustering of microphones based on the magnitude square coherence function, and evaluates the method on a database recorded using various ad-hoc microphone arrangements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small element spacing in compact arrays results in strong mutual coupling between array elements. Performance degradation associated with the strong coupling can be avoided through the introduction of a decoupling network consisting of interconnected reactive elements. We present a systematic design procedure for decoupling networks of symmetrical arrays with more than three elements and characterized by circulant scattering parameter matrices. The elements of the decoupling network are obtained through repeated decoupling of the characteristic eigenmodes of the array, which allows the calculation of element values using closed-form expressions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reduced element spacing in antenna arrays gives rise to strong mutual coupling between array elements and may cause significant performance degradation. These effects can be alleviated by introducing a decoupling network consisting of interconnected reactive elements. The existing design approach for the synthesis of a decoupling network for circulant symmetric arrays allows calculation of element values using closed-form expressions, but the resulting circuit configuration requires multilayer technology for implementation. In this paper, a new structure for the decoupling of circulant symmetric arrays of more than four elements is presented. Element values are no longer obtained in closed form, but the resulting circuit is much simpler and can be implemented on a single layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The small element spacing of compact multiport arrays introduces strong mutual coupling between the antenna ports. Due to this coupling, the input impedance of the array changes when elements excitations are varied, and consequently, the array cannot be matched for an arbitrary excitation. Decoupling networks have in the past been used to provide an additional connection between antenna ports in order to cancel the coupling between elements. An alternative approach is to design the antenna so that each port does not excite a single element, but all elements simultaneously instead. The geometry of the antenna is optimized so that this direct excitation of elements counteracts the mutual coupling, thus yielding decoupled ports. This paper describes the design of such a 4-port antenna.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small-angle and ultra-small-angle neutron scattering (SANS and USANS), low-pressure adsorption (N2 and CO2), and high-pressure mercury intrusion measurements were performed on a suite of North American shale reservoir samples providing the first ever comparison of all these techniques for characterizing the complex pore structure of shales. The techniques were used to gain insight into the nature of the pore structure including pore geometry, pore size distribution and accessible versus inaccessible porosity. Reservoir samples for analysis were taken from currently-active shale gas plays including the Barnett, Marcellus, Haynesville, Eagle Ford, Woodford, Muskwa, and Duvernay shales. Low-pressure adsorption revealed strong differences in BET surface area and pore volumes for the sample suite, consistent with variability in composition of the samples. The combination of CO2 and N2 adsorption data allowed pore size distributions to be created for micro–meso–macroporosity up to a limit of �1000 Å. Pore size distributions are either uni- or multi-modal. The adsorption-derived pore size distributions for some samples are inconsistent with mercury intrusion data, likely owing to a combination of grain compression during high-pressure intrusion, and the fact that mercury intrusion yields information about pore throat rather than pore body distributions. SANS/USANS scattering data indicate a fractal geometry (power-law scattering) for a wide range of pore sizes and provide evidence that nanometer-scale spatial ordering occurs in lower mesopore–micropore range for some samples, which may be associated with inter-layer spacing in clay minerals. SANS/USANS pore radius distributions were converted to pore volume distributions for direct comparison with adsorption data. For the overlap region between the two methods, the agreement is quite good. Accessible porosity in the pore size (radius) range 5 nm–10 lm was determined for a Barnett shale sample using the contrast matching method with pressurized deuterated methane fluid. The results demonstrate that accessible porosity is pore-size dependent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Compact arrays enable various applications such as antenna beam-forming and multi-input, multi-output (MIMO) schemes on limited-size platforms. The reduced element spacing in compact arrays introduces high levels of mutual coupling which can affect the performance of the adaptive array. This coupling causes a mismatch at the input ports, which disturbs the performance of the individual elements in the array and affects the implementation of beam steering. In this article, a reactive decoupling network for a 3-element monopole array is used to establish port isolation while simultaneously matching input impedance at each port to the system impendence. The integrated decoupling and matching network is incorporated in the ground plane of the monopole array, providing further development scope for beamforming using phase shifters and power splitters in double-layered circuits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stress- and strain-controlled tests of heat treated high-strength rail steel (Australian Standard AS1085.1) have been performed in order to improve the characterisation of the said material׳s ratcheting and fatigue wear behaviour. The hardness of the rail head material has also been studied and it has been found that hardness reduces considerably below four-millimetres from the rail top surface. Historically, researchers have used test coupons with circular cross-sections to conduct cyclic load tests. Such test coupons, typically five-millimetres in gauge diameter and ten‐millimetres in grip diameter, are usually taken from the rail head sample. When there is considerable variation of material properties over the cross-section it becomes likely that localised properties of the rail material will be missed. In another case from the literature, disks 47 mm in diameter for a twin-disk rolling contact test machine were obtained directly from the rail sample and used to validate ratcheting and rolling contact fatigue wear models. The question arises: How accurate are such tests, especially when large material property gradients exist? In this research paper, the effects of rail sampling location on the ratcheting behaviour of AS1085.1 rail steel were investigated using rectangular-shaped specimens obtained at four different depths to observe their respective cyclic plasticity behaviour. The microstructural features of the test coupons were also analysed, especially the pearlite inter-lamellar spacing which showed strong correlation with both hardness and cyclic plasticity behaviour of the material. This work ultimately provides new data and testing methodology to aid the selection of valid parameters for material constitutive models to better understand rail surface ratcheting and wear.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A triode ion plating system with a hot cathode has been described. The performance of the system is studied, by studying the discharge behaviour from the bias voltage and bias current point of view, at the substrate, for different anode currents, filament voltages and pressures. The observed substrate bias current for different operating parameters is not found to be normal. The behaviour is explained on the bias of ionisation at the respective electrodes. The studies have revealed the importance of inter-electrode spacing in the enhancement of ionisation, in ion plating systems, at lower pressures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and ID NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested by enforcing the condition of polynomial reproduction whilst deriving the shape functions. Nevertheless, given the higher complexity in forming the knotclouds for tetrahedral elements especially when higher demand is placed on the order of continuity of the shape functions across inter-element boundaries, we presently emphasize an exploration of the triangular prism based formulation in the context of several benchmark problems of interest in linear solid mechanics. In the absence of a more rigorous study on the convergence analyses, the numerical exercise, reported herein, helps establish the method as one of remarkable accuracy and robust performance against numerical ill-conditioning (such as locking of different kinds) vis-a-vis the conventional FEM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transliteration system for mobile phone is an area that is always in demand given the difficulties and constraints we face in its implementation. In this paper we deal with automatic transliteration system for Kannada which has a non-uniform geometry and inter-character spacing unlike non-oriental language text like English. So it is even more a challenging problem. Working model consists of part of the process taking place on a mobile with remaining on a server. Good results are achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The DMS-FEM, which enables functional approximations with C(1) or still higher inter-element continuity within an FEM-based meshing of the domain, has recently been proposed by Sunilkumar and Roy [39,40]. Through numerical explorations on linear elasto-static problems, the method was found to have conspicuously superior convergence characteristics as well as higher numerical stability against locking. These observations motivate the present study, which aims at extending and exploring the DMS-FEM to (geometrically) nonlinear elasto-static problems of interest in solid mechanics and assessing its numerical performance vis-a-vis the FEM. In particular, the DMS-FEM is shown to vastly outperform the FEM (presently implemented through the commercial software ANSYS (R)) as the former requires fewer linearization and load steps to achieve convergence. In addition, in the context of nearly incompressible nonlinear systems prone to volumetric locking and with no special numerical artefacts (e.g. stabilized or mixed weak forms) employed to arrest locking, the DMS-FEM is shown to approach the incompressibility limit much more closely and with significantly fewer iterations than the FEM. The numerical findings are suggestive of the important role that higher order (uniform) continuity of the approximated field variables play in overcoming volumetric locking and the great promise that the method holds for a range of other numerically ill-conditioned problems of interest in computational structural mechanics. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High temperature bonded interface indentation experiments are carried out on a Zr based bulk metallic glass (BMG) to examine the plastic deformation characteristics in subsurface deformation zone under a Vickers indenter. The results show that the shear bands are semi-circular in shape and propagate in radial direction. At all temperatures the inter-band spacing along the indentation axis is found to increase with increasing distance from the indenter tip. The average shear band spacing monotonically increases with temperature whereas the shear band induced plastic deformation zone is invariant with temperature. These observations are able to explain the increase in pressure sensitive plastic flow of BMGs with temperature. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of high pressure on reduced graphene oxide (RGO) has been investigated using X-ray diffraction (XRD) and infrared (IR) absorption spectroscopy. Our XRD measurements show two-step reversible compression in the inter-layer spacing of RGO whereas intra-layer ordering exhibits a high pressure behavior similar to that of graphite up to 20 GPa. The line shape analysis of (100) peak, representing the intra-layer ordering, suggests presence of local out of plane distortions in RGO in the form of puckered regions which progressively straighten out as a function of pressure. IR measurements show reversible changes in spectroscopic features attributed to remnant functional groups in the inter-layer region. These measurements suggest high stability and recovering ability of RGO under pressure cycling. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a nanostructured ``super surface'' fabricated using a simple recipe based on deep reactive ion etching of a silicon wafer. The topography of the surface is inspired by the surface topographical features of dragonfly wings. The super surface is comprised of nanopillars 4 mm in height and 220 nm in diameter with random inter-pillar spacing. The surface exhibited superhydrophobicity with a static water contact angle of 154.0 degrees and contact angle hysteresis of 8.3 degrees. Bacterial studies revealed the bactericidal property of the surface against both gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) strains through mechanical rupture of the cells by the sharp nanopillars. The cell viability on these nanostructured surfaces was nearly six-fold lower than on the unmodified silicon wafer. The nanostructured surface also killed mammalian cells (mouse osteoblasts) through mechanical rupture of the cell membrane. Thus, such nanostructured super surfaces could find applications for designing selfcleaning and anti-bacterial surfaces in diverse applications such as microfluidics, surgical instruments, pipelines and food packaging.